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Introduction

Over the last decade, a lot of progress has been made in order
to understand the Riemannian aspects of noncommutative
geometry.

For the description of “quantum gravity” it is of utmost
importance to understand the Riemannian structure of
noncommutative space.

We are interested in various aspects of (analogues of) the
Riemannian curvature of noncommutative manifolds/algebras.

How far one can get with a naive approach to curvature?
Connection, curvature tensor, Ricci and scalar curvature?

Our approach is naive in the sense that we collect what we
need in order to prove what we want. This sheds light on the
question how much one can expect in the general situation.

In particular: What kind of algebraic structure guarantees the
existence of a (torsionfree, metric) Levi-Civita connection?
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General idea

In Riemannian geometry, the main (algebraic) objects are:

Algebra of functions A, vector fields M, the metric g .

M – (finitely generated) projective A-module. (One can
multiply a vector field with a function to get a new vector
field). Serre-Swan theorem.

g – The metric is a map g : M ×M → A (giving the inner
product between tangent vectors at each point).

Finally, there is another algebraic structure which is important:
Der(A) – the set of (algebraic) derivations of the algebra A.
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Vector fields and derivations

Recall that a derivation d : A → A is a linear map such that

d(ab) = a(db) + (da)b

for all a, b ∈ A. In differential geometry, every vector field acts as a
derivation of the algebra of functions. In local coordinates:

X = X i ∂

∂x i
=⇒ X (f ) = X i ∂f

∂x i

A well-known theorem in differential geometry states that there is
a one-to-one correspondence between the vector fields and the
derivations of the algebra of functions. That is, there is an
isomorphism of modules

ϕ : Der(A)→ M.
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Connections

Recall that a connection (on the tangent bundle) is a map
∇ : M ×M → M such that

1 ∇X (Y + Z ) = ∇XY +∇XZ

2 ∇X+YZ = ∇XZ +∇YZ

3 ∇fXY = f∇XY

4 ∇X (fY ) = f∇XY + X (f )Y X (f )Y

for f ∈ A and X ,Y ,Z ∈ M.

In the fourth requirement, we need a vector field X to act as a
derivation. This is a notion that we would to generalize to the
noncommutative setting.

(Note that there are of course formulations of differential forms and
connections in noncommutative geometry that avoid derivations,
but in many cases one would like a “derivation based calculus”.)



Introduction Pseudo-Riemannian calculi Examples The Chern-Gauss-Bonnet theorem Summary

Noncommutative algebraic version?

The idea is to naively copy the preceeding algebraic structures of
Riemannian geometry to the case when the algebra A is
noncommutative. Thus, we want to choose

A – noncommutative ∗-algebra (complex valued functions)

M – projective (right) A-module (vector fields)

h – A-bilinear map h : M ×M → A (metric)

∇ : Der(A)×M → M (connection)

In this context there is an important difference between
commutative and noncommutative algebras: Der(A) is in general
not a module if A is a noncommutative algebra. That is, if one
multiplies a derivation with an algebra element, it is no longer a
derivation.

Thus, it doesn’t make sense to assume that M and Der(A) are
isomorphic as A-modules.
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Metric modules

Let us now be more precise, and introduce the concepts leading to
a definition of “Pseudo-Riemannian calculus”.

A hermitian form on the right A-module M is a map
h : M ×M → A such that for a ∈ A and U,V ,W ∈ M

h(U,V + W ) = h(U,V ) + h(U,W )

h(U,Va) = h(U,V )a

h(U,V )∗ = h(V ,U).

We say that h is nondegenerate if h(U,V ) = 0 for all V ∈ M
implies that U = 0.

If h is a nondegenerate hermitian form on M, we say that the pair
(M, h) is a (right) metric A-module.
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Real metric calculus

Definition

Let (M, h) be a (right) metric A-module, let g ⊆ Der(A) be a
(real) Lie algebra of hermitian derivations and let ϕ : g→ M be a
R-linear map. Denoting the pair (g, ϕ) by gϕ, the triple (M, h, gϕ)
is called a real metric calculus if it holds that

1 the image Mϕ = ϕ(g) generates M as a (right) A-module,

2 h(E1,E2)∗ = h(E1,E2) for all E1,E2 ∈ Mϕ.

We do not need to consider all derivations; we assume g is a
sub-(Lie)algebra of Der(A).

Every derivation corresponds to a vector field via ϕ : g→ M.
However, there are vector fields that do not correspond to a
derivation.

The vector fields that correspond to derivations generate all
vector fields.
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Real connection calculus

Let us now add a connection to the previous data.

Definition

Let (M, h, gϕ) be a real metric calculus and let ∇ : g×M → M
denote an affine connection on M. If it holds that

h(∇dE1,E2) = h(∇dE1,E2)∗

for all E1,E2 ∈ Mϕ and d ∈ g then (M, h, gϕ,∇) is called a real
connection calculus.
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Pseudo-Riemannian calculus

The Levi-Civita connection is metric and torsionfree, so let us
introduce these concepts in our framework.

Definition

Let (M, h, gϕ,∇) be a real connection calculus over M. The
calculus is metric if

d
(
h(U,V )

)
= h

(
∇dU,V

)
+ h
(
U,∇dV

)
for all d ∈ g, U,V ∈ M, and torsionfree if

∇d1ϕ(d2)−∇d2ϕ(d1)− ϕ
(
[d1, d2]

)
= 0

for all d1, d2 ∈ g. A metric and torsionfree real connection calculus
over M is called a pseudo-Riemannian calculus over M.
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Uniqueness of the pseudo-Riemannian calculus

Given a real metric calculus, there is no guarantee that one may
find a torsionfree and metric connection. So far the assumptions
on the algebraic objects involved are close to none, and it is not
surprising that existence can not be guaranteed.

However, if such a connection exists, it is unique:

Proposition

Let (M, h, gϕ) be a real metric calculus over M. Then there exists
at most one connection ∇ on M, such that (M, h, gϕ,∇) is a
pseudo-Riemannian calculus (i.e., such that ∇ is a real, torsionfree
and metric connection).
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The noncommutative torus

The noncommutative torus T 2
q is defined via two unitary

generators Z ,W satisfying WZ = qZW , where |q| = 1. Introduce

X 1 =
1

2
√

2
(U∗ + U) X 2 =

i

2
√

2
(U∗ − U)

X 3 =
1

2
√

2
(V ∗ + V ) X 4 =

i

2
√

2
(V ∗ − V )

Let g be the Lie algebra generated by the two canonical derivations
δ1, δ2 on T 2

q . M is the submodule of (T 2
q )4 generated by

E1 = (−X 2,X 1, 0, 0) E2 = (0, 0,−X 4,X 3)

Define ϕ : g→ M by ϕ(δi ) = Ei for i = 1, 2. One may choose a
metric as h(Ei ,Ej) = hδij , where h ∈ T 2

q is hermitian.
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The noncommutative 3-sphere

We consider the 3-sphere as defined by K. Matsumoto: Let S3
θ be

the ∗-algebra generated by two normal elements Z ,W satisfying

WZ = qZW W ∗Z = q̄ZW ∗ WW ∗ + ZZ ∗ = 1,

and introduce

X 1 =
1

2

(
Z + Z ∗) X 2 =

1

2i

(
Z − Z ∗)

X 3 =
1

2

(
W + W ∗) X 4 =

1

2i

(
W −W ∗),

implying (X 1)2 + (X 2)2 + (X 3)2 + (X 4)2 = 1. Normality of Z ,W
is equivalent to [X 1,X 2] = [X 3,X 4] = 0.
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The module of vector fields

Let M be the submodule of (S3
θ )4 generated by

E1 = (−X 2,X 1, 0, 0)

E2 = (0, 0,−X 4,X 3)

E3 = (X 1|W |2,X 2|W |2,−X 3|Z |2,−X 4|Z |2),

where |Z |2 = ZZ ∗ and |W |2 = WW ∗.

Let g be the Lie algebra generated by the derivations

∂1(Z ) = iZ ∂1(W ) = 0

∂2(Z ) = 0 ∂2(W ) = iW

∂3(Z ) = Z |W |2 ∂3(W ) = −W |Z |2,

and [∂a, ∂b] = 0 for a, b = 1, 2, 3. Furthermore, set ϕ(∂a) = Ea.
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Define

h(U,V ) = (Ua)∗habV
b

where

hab =
4∑

k=1

(E k
a )∗E k

b =

|Z |2 0 0
0 |W |2 0
0 0 |Z |2|W |2

 .

The above data defines a real metric calculus, and one may
compute the (unique) Levi-Civita connection as

∇∂1E1 = −E3 ∇∂2E2 = E3 ∇∂3E3 = E3(|W |2 − |Z |2)

∇∂1E2 = 0 ∇∂1E3 = E1|W |2 ∇∂2E3 = −E2|Z |2.
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Curvature

One may proceed to compute the curvature operators

R(∂a, ∂b)U = ∇∂a∇∂bU −∇∂b∇∂aU −∇[∂a,∂b]U

R(∂1, ∂2) =

 0 |W |2 0
−|Z |2 0 0

0 0 0



R(∂1, ∂3) =

 0 0 |Z |2|W |2
0 0 0
−|Z |2 0 0



R(∂2, ∂3) =

0 0 0
0 0 |Z |2|W |2
0 −|W |2 0
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The noncommutative 4-sphere

In the same way, one may consider the noncommutative 4-sphere:
For θ ∈ [0, 1), we let S4

θ denote the unital ∗-algebra (over C)
generated by Z , W and T , satisfying the relations

WZ = qZW W ∗Z = q̄ZW ∗

ZZ ∗ + WW ∗ + T 2 = 1

T ∗ = T [T ,Z ] = [T ,W ] = [W ,W ∗] = [Z ,Z ∗] = 0,

(1)

where q = e i2πθ. One can construct a pseudo-Riemannian calculus
over the noncommutative 4-sphere with respect to the metrics:

(hab) = δ


|Z |2(1− T 2)2 0 0 0

0 |W |2(1− T 2)2 0 0
0 0 |Z |2|W |2(1− T 2) 0
0 0 0 1− T 2

 .

where δ ∈ S4
θ is assumed to be hermitian, central and regular.
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The classical Gauss-Bonnet theorem

The classical Gauss-Bonnet theorem states that for a compact
surface Σ without boundary∫

Σ
K
√
g = 2πχ(Σ)

where K denotes the Gaussian curvature (half the scalar curvature)
and χ denotes the Euler characteristic of Σ.

The importance of such theorem is that it connects metric
information (the curvature) with topological information (the Euler
characteristic). Hence, the value of the above integral is the same
for all possible Riemannian metrics on Σ.

Over the last decade, people have worked hard on understanding
similar statements for the noncommutative torus.
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The Chern-Gauss Bonnet theorem

For even dimensional manifolds (the odd dimensional case is
trivial), it is no longer the scalar curvature which gives a
topological integral, but rather the Pfaffian of the curvature form.
For the pseudo-Riemannian calculus constructed on the
noncommutative 4-sphere, one can make sense of this and prove
the following.

Theorem

Let δ(T ) be an invertible polynomial in the localization of the
center of S4

θ . Then (modulo technical assumptions)

χ(S4
θ ) =

1

32π2
τδ,loc

(
RabcdRabcd − 4 Ricab Ricab +S2

)
= 2.

Where τδ,loc denotes an integral/trace on S4
θ .
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Summary

We have constructed a calculus over an algebra, which
involves choosing an appropriate module with an hermitian
form (M, h), and a Lie algebra of derivations g together with
a map ϕ : g→ M, associating a “vector field” to each
derivation.

In this calculus one may discuss torsionfree and metric
connections on M, and prove that such a connection is unique
if it exists.

We hope that these naive investigations can shed light on
what kind of properties one can expect when considering
curvature of noncommutative manifolds.

We have proven a simple analogue of the Chern-Gauss-Bonnet
theorem for the noncommutative 4-sphere. Of course, it
depends on a number of choices and particular properties of
the 4-sphere, but we hope it can still teach us something
about the general case.
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Thanks for listening!
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