Skew inverse semigroup rings

Johan Öinert

втн

The 1st SNAG meeting, Linköping, September 2018

Johan Öinert (BTH)

Skew inverse semigroup rings

2018-09-27 1 / 29

Based on a joint work with Viviane Beuter, Daniel Gonçalves and Danilo Royer from Florianópolis, Santa Catarina, Brazil.

arXiv:1708.04973 [math.RA]

Outline

Steinberg algebras

Inverse semigroups

Skew inverse semigroup rings

3 Steinberg algebras

Inverse semigroups

Definition

A semigroup S is said to be an *inverse semigroup*, if for each $s \in S$ there is a unique element $s^* \in S$ such that

$$ss^*s=s$$
 and $s^*ss^*=s^*$

hold.

Examples

- Any group (with $g^* = g^{-1}$)
- Any semilattice (semigroup of commuting idempotents, with $s^* = s$)
- $S = \mathbb{Q}$ with multiplication

The symmetric inverse semigroup

Example (The symmetric inverse semigroup on X)

• Let X be a non-empty set.

• Put

 $\mathcal{I}_X := \{ \text{ bijections } A \to B \mid A, B \text{ subsets of } X \}$

- Equip \mathcal{I}_X with the binary operation "function composition whenever possible".
- \mathcal{I}_X is an inverse semigroup!

Theorem (Wagner-Preston)

For each inverse semigroup S, there is some set X such that S can be realized as an inverse subsemigroup of \mathcal{I}_X .

An involution on S

Take any $s \in S$ and fix it. We have

$$\begin{cases} ss^*s = s\\ s^*ss^* = s^*. \end{cases}$$
(1)

Since s is fixed, so is s^* and we may consider the set of equations

$$\begin{cases} s^* x s^* = s^* \\ x s^* x = x. \end{cases}$$
(2)

Notice that x = s is a solution. Thus, $s = (s^*)^*$.

Remark

One can also show that
$$(st)^* = t^*s^*$$
, for any $s, t \in S$.

E(S), the set of idempotents in S

Recall:
$$E(S) := \{u \in S \mid u^2 = u\}$$

Example

For any $s \in S$, the element ss^* is an idempotent. Indeed,

$$(ss^*)(ss^*) = (ss^*s)s^* = ss^*.$$

Remark

Take any idempotent $u = u^2 \in E(S)$ and fix it.

• Consider this set of equations: $\begin{cases} uxu = u \\ xux = x \end{cases}$ • Clearly, x = u is a solution. Thus, the unique solution is $u^* = x = u$.

E(S) is a commutative subsemigroup of S

Let $u, v \in E(S)$ be idempotents, i.e. $u = u^2$ and $v = v^2$.

$$(uv)(v(uv)^*u)(uv) = uv^2(uv)^*u^2v = uv(uv)^*uv = uv$$

and

$$\begin{aligned} (v(uv)^*u)(uv)(v(uv)^*u) &= v(uv)^*u^2v^2(uv)^*u = v((uv)^*uv(uv)^*)u \\ &= v(uv)^*u \end{aligned}$$

Hence, $(uv)^* = v(uv)^*u$.

$$(uv)^*(uv)^* = v(uv)^*uv(uv)^*u = v((uv)^*uv(uv)^*)u = v(uv)^*u = (uv)^*u$$

Thus, $(uv)^* = uv$. By symmetry, vu is also idempotent and we get

$$(uv)(vu)(uv) = uv^2u^2v = uvuv = uv \text{ and } (vu)(uv)(vu) = vuvu = vuv$$

A partial order on E(S) and S

Definition (\leq on E(S))

For $u,v\in E(S)$ we put

 $u \leq v$ if u = uv.

Definition (\leq on S)

For $s, t \in S$ we put

$$s \leq t$$
 if $s = et$

for some idempotent e.

Remark

• $s \leq t \iff s = ss^*t \iff s = ts^*s$

• If S is unital with identity element 1, then $u \leq 1$ for any $u \in E(S)$, since $u = u \cdot 1$.

• If
$$s \leq t$$
 and $a \leq b$, then $sa \leq tb$.

Inverse semigroups

3 Steinberg algebras

Partial actions of inverse semigroups

Definition

A partial action of an inverse semigroup S on a ring \mathcal{A} is a collection of ideals $\{D_s\}_{s\in S}$ of \mathcal{A} and ring isomorphisms $\{\pi_s: D_{s^*} \to D_s\}_{s\in S}$ such that, for any $s, t \in S$, the following three assertions hold:

() \mathcal{A} , viewed as an additive group, is generated by the set $\bigcup_{e \in E(S)} D_e$;

()
$$\pi_s(\pi_t(x)) = \pi_{st}(x)$$
, for all $x \in D_{t^*} \cap D_{t^*s^*}$.

Some properties

Proposition

Let $(\{\pi_s\}_{s\in S}, \{D_s\}_{s\in S})$ be a partial action of an inverse semigroup S on a ring A. The following assertions hold:

(a)
$$D_s \subseteq D_{ss^*}$$
 , for any $s \in S$;

•
$$\pi_e = \mathrm{id}_{D_e}$$
, for any $e \in E(S)$;

$${f O}$$
 $\pi_s^{-1}=\pi_{s^*}$, for any $s\in S$;

• Let
$$s, t \in S$$
. If $s \leq t$, then $D_s \subseteq D_t$;

• Let
$$s,t \in S$$
. If $s \leq t$, then $\pi_s(x) = \pi_t(x)$, for all $x \in D_{s^*}$.

) If S is unital, then $D_1 = \mathcal{A}$ and $\pi_1 = \mathrm{id}_{\mathcal{A}}$;

Skew inverse semigroup rings: Step 1

Given a partial action $(\{\pi_s\}_{s\in S}, \{D_s\}_{s\in S})$ of S on a ring \mathcal{A} , we construct the corresponding *skew inverse semigroup ring* $\mathcal{A} \rtimes_{\pi} S$ in three steps.

First we consider the set

$$\mathcal{L} = \left\{ \sum_{s \in S}^{\text{finite}} a_s \delta_s \ \Big| \ a_s \in D_s \right\}$$

where δ_s , for $s \in S$, is a formal symbol. We equip \mathcal{L} with component-wise addition and with a multiplication defined as the linear extension of the rule

$$(a_s\delta_s)(b_t\delta_t) = \pi_s(\pi_{s^*}(a_s)b_t)\delta_{st}.$$

Remark

• Under mild assumptions on \mathcal{A}, \mathcal{L} will be an associative ring.

• \mathcal{L} is a generalization of a *partial skew group ring*.

Johan Öinert (BTH)

Skew inverse semigroup rings

Skew inverse semigroup rings: Step 2

2 Then, we consider the ideal

$$\mathcal{N} = \langle a\delta_r - a\delta_s \mid r, s \in S, \ r \leq s \text{ and } a \in D_r \rangle,$$

i.e. \mathcal{N} is the ideal of \mathcal{L} generated by all elements of the form $a\delta_r - a\delta_s$, where $r \leq s$ and $a \in D_r$.

Lemma

The ideal \mathcal{N} is equal to the additive group generated by the set $\{a\delta_r - a\delta_s \mid r, s \in S, r \leq s \text{ and } a \in D_r\}.$

Skew inverse semigroup rings: Step 3

Sinally, we define the corresponding skew inverse semigroup ring as the quotient ring

$$\mathcal{A}\rtimes_{\pi} S := \mathcal{L}/\mathcal{N}.$$

Elements of $\mathcal{A} \rtimes_{\pi} S$ will be written as \overline{x} , where $x \in \mathcal{L}$.

Remark

Any partial skew group ring $\mathcal{A} \star_{\alpha} G$ can be realized as a skew inverse semigroup ring over the *Exel semigroup* of *G*.

Bad news

 $\mathcal{A} \rtimes_{\pi} S$ does not have any natural (or useful) gradation!

The diagonal of $\mathcal{A} \rtimes_{\pi} S$

We define the *diagonal* of $\mathcal{A} \rtimes_{\pi} S$ as the following set:

$$\mathcal{D} = \left\{ \sum_{i=1}^{n} \overline{a_i \delta_{e_i}} \mid n \in \mathbb{Z}_+, \ e_i \in E(S), \ a_i \in D_{e_i} \right\}$$

Proposition

Let \mathcal{A} be a commutative and associative ring. Then \mathcal{A} is embedded in $\mathcal{A} \rtimes_{\pi} S$ and is isomorphic to \mathcal{D} , which is a commutative subring of $\mathcal{A} \rtimes_{\pi} S$.

Ideals of $\mathcal{A} \rtimes_{\pi} S$

Theorem (Beuter + Gonçalves + \ddot{O} + Royer)

Let \mathcal{A} be an associative and commutative ring. Then \mathcal{A} is a maximal commutative subring of $\mathcal{A} \rtimes_{\pi} S$ if, and only if, $\mathcal{J} \cap \mathcal{A} \neq \{0\}$ for each non-zero ideal \mathcal{J} of $\mathcal{A} \rtimes_{\pi} S$.

Johan Öinert (BTH)

Skew inverse semigroup rings

2018-09-27 18 / 29

Simplicity of $\mathcal{A} \rtimes_{\pi} S$

Definition

An ideal I of \mathcal{A} is *S*-invariant if $\pi_s(I \cap D_{s^*}) \subseteq I$ holds for each $s \in S$. The ring \mathcal{A} is said to be *S*-simple if \mathcal{A} has no non-zero *S*-invariant proper ideal.

Theorem (Beuter + Gonçalves + \ddot{O} + Royer)

If \mathcal{A} is an associative and commutative ring, then the following two assertions are equivalent:

- **(**) The skew inverse semigroup ring $\mathcal{A} \rtimes_{\pi} S$ is simple;
- **()** \mathcal{A} is S-simple, and $\mathcal{A} \cong \mathcal{D}$ is a maximal commutative subring of $\mathcal{A} \rtimes_{\pi} S$.

Inverse semigroups

Skew inverse semigroup rings

Steinberg algebras

Groupoids

Definition

A groupoid is a set $\mathcal G$ endowed with a product map

$$\mathcal{G}^{(2)} \ni (a,b) \mapsto ab \in \mathcal{G},$$

(where $\mathcal{G}^{(2)} \subseteq \mathcal{G} imes \mathcal{G}$ is the set of *composable pairs*) and an involution map

$$\mathcal{G} \ni a \mapsto a^{-1} \in \mathcal{G}$$

for which the following two assertions hold:

• if (a,b) and (b,c) are in $\mathcal{G}^{(2)}$, then so are (ab,c) and (a,bc) and the equation (ab)c = a(bc) holds;

• for each $a \in \mathcal{G}$ we have $(a, a^{-1}) \in \mathcal{G}^{(2)}$ and, if $(b, c) \in \mathcal{G}^{(2)}$ then $b^{-1}(bc) = c$ and $(bc)c^{-1} = b$.

$Groupoids, \ cont'd$

Definition

Let \mathcal{G} be a groupoid and let $a \in \mathcal{G}$ be arbitrary.

- The range map: $r(a) := aa^{-1}$
- The source map: $s(a) := a^{-1}a$
- The unit space of \mathcal{G} is $\mathcal{G}^{(0)} := \{ b \in \mathcal{G} \mid b \in r(\mathcal{G}) = s(\mathcal{G}) \}.$
- For $B, C \subseteq \mathcal{G}$, we define
 - $BC := \{bc \in \mathcal{G} \mid b \in B, c \in C \text{ and } s(b) = r(c)\}$
 - $B^{-1} := \{ b^{-1} \mid b \in B \}$

Remark

$$(b,c) \in \mathcal{G}^{(2)}$$
 if, and only if, $s(b) = r(c)$.

Johan Öinert (BTH)

$Groupoids, \ cont'd$

Definition

- A bisection in G is a subset B ⊆ G such that the restrictions of r and s to B are both injective.
- A topological groupoid \mathcal{G} is said to be *étale* if $\mathcal{G}^{(0)}$ is locally compact and Hausdorff, and its source map is a local homeomorphism from \mathcal{G} to $\mathcal{G}^{(0)}$.
- An étale groupoid \mathcal{G} is said to be *ample* if \mathcal{G} has a basis of compact bisections.

We shall only be interested in Hausdorff and ample groupoids!

Remark

One can show that a Hausdorff étale groupoid is ample if, and only if, $\mathcal{G}^{(0)}$ is totally disconnected.

Johan Öinert (BTH)

$Groupoids,\ cont'd$

Definition

- A subset U of the unit space $\mathcal{G}^{(0)}$ of \mathcal{G} is *invariant* if $s(b) \in U$ implies $r(b) \in U$.
- We call ${\cal G}$ minimal if ${\cal G}^{(0)}$ has no nontrivial open invariant subset.
- The *isotropy subgroupoid of* G is the set

$$\operatorname{Iso}(\mathcal{G}) := \{ b \in \mathcal{G} \mid r(b) = s(b) \}.$$

A Hausdorff and ample groupoid G is said to be *effective* if the interior of Iso(G) is G⁽⁰⁾, or equivalently, for every non-empty compact bisection B ⊆ G \ G⁽⁰⁾, there exists some b ∈ B such that s(b) ≠ r(b).

The Steinberg algebra $A_R(\mathcal{G})$

Definition

Let R be a unital commutative ring and let \mathcal{G} be a Hausdorff and ample groupoid. The *Steinberg algebra* $A_R(\mathcal{G})$ is the collection of compactly supported locally constant functions from \mathcal{G} to R with pointwise addition, and convolution product

$$(f * g)(b) = \sum_{r(c)=r(b)} f(c)g(c^{-1}b) = \sum_{cd=b} f(c)g(d).$$

The support of $f \in A_R(\mathcal{G})$, is denoted by

 $\mathrm{supp}(f) = \{b \in \mathcal{G} \mid f(b) \neq 0\} \quad (\text{a clopen subset of } \mathcal{G}).$

Steinberg algebras as skew inverse semigroup rings

Remark

Let \mathcal{G} be a Hausdorff and ample groupoid. The set \mathcal{G}^a of all compact bisections in \mathcal{G} is an *inverse semigroup* under the operations defined by $BC = \{bc \in \mathcal{G} \mid b \in B, c \in C \text{ and } s(b) = r(c)\}, \text{ and}$ $B^* = \{b^{-1} \mid b \in B\}.$

Theorem (Beuter + Gonçalves)

Let \mathcal{G} be a Hausdorff and ample groupoid. Then there is a partial action α of \mathcal{G}^a on $\mathcal{L}_c(\mathcal{G}^{(0)})$ such that the Steinberg algebra $A_R(\mathcal{G})$ is isomorphic, as an R-algebra, to the skew inverse semigroup ring $\mathcal{L}_c(\mathcal{G}^{(0)}) \rtimes \mathcal{G}^a$.

Remark

 $\mathcal{L}_c(X)$ is the commutative *R*-algebra of all locally constant, compactly supported, *R*-valued functions on *X* (with pointwise addition and multiplication).

26 / 29

Remark

The isomorphism of Theorem 4 is given by the map $\tilde{\psi}: \mathcal{L}_c(\mathcal{G}^{(0)}) \rtimes \mathcal{G}^a \to A_R(\mathcal{G})$, which is defined on elements of the form $\overline{f_B \delta_B}$, by

$$\tilde{\psi}(\overline{f_B\delta_B})(x) = \begin{cases} f_B(r(x)) & \text{if } x \in B\\ 0 & \text{if } x \notin B, \end{cases}$$

and extended linearly to $\mathcal{L}_c(\mathcal{G}^{(0)}) \rtimes \mathcal{G}^a$. In the proof of Theorem 4 it was shown that $\tilde{\psi}$ admits a left inverse, namely the map $\varphi: A_R(\mathcal{G}) \to \mathcal{L}_c(\mathcal{G}^{(0)}) \rtimes \mathcal{G}^a$ defined as follows: Given $f = \sum_{j=1}^n b_j 1_{B_j} \in A_R(\mathcal{G})$, where the B_j 's are pairwise disjoint compact bisections of \mathcal{G} , let

$$\varphi(f) = \varphi\left(\sum_{i=1}^n b_j \mathbf{1}_{B_j}\right) := \sum_{j=1}^n \overline{b_j \mathbf{1}_{r(B_j)} \delta_{B_j}}.$$

27 / 29

Actually φ is the inverse of $\tilde{\psi}$, and, in particular, it is bijective. By the surjectivity of φ , given any $f \in \mathcal{L}_{c}(\mathcal{G}^{(0)}) \rtimes \mathcal{G}^{a}$ we can write Skew inverse semigroup rings 2018-09-27

Simplicity of Steinberg algebras

Proposition

Let \mathcal{G} be a Hausdorff and ample groupoid, and let R be a field. Then \mathcal{G} is minimal if, and only if, $\mathcal{L}_c(\mathcal{G}^{(0)})$ is \mathcal{G}^a -simple.

Proposition

Let \mathcal{G} be a Hausdorff and ample groupoid. Then \mathcal{G} is effective if, and only if, $\mathcal{D} \simeq \mathcal{L}_c(\mathcal{G}^{(0)})$ is a maximal commutative subring of $\mathcal{L}_c(\mathcal{G}^{(0)}) \rtimes \mathcal{G}^a$.

Theorem (Clark et al. & Beuter, Gonçalves, Ö, Royer)

Let \mathcal{G} be a Hausdorff and ample groupoid, and let R be a unital and commutative ring. Then the Steinberg algebra $A_R(\mathcal{G})$ is simple if, and only if, \mathcal{G} is effective, minimal, and R is a field.

The end

THANK YOU FOR YOUR ATTENTION!

Johan Öinert (BTH)

Skew inverse semigroup rings

2018-09-27 29 / 29