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Öinert and myself.



Ore extensions, motivation

Introduced by Norwegian mathematician Øystein Ore, under the
name of noncommutative polynomial rings.

Take a ring R and consider the additive group R[x ]. Want to give
it a new multiplication.



Ore extensions, motivation

Would like R[x ] to be an associative ring. Would also like
deg(ab) = deg(a) + deg(b) or at least deg(ab) ≤ deg(a) + deg(b).
Would also like xn · xm = xn+m.

If r ∈ R we must have xr = σ(r)x + δ(r), for some functions σ
and δ.

In general we must have

axm · bxn =
∑
i∈N

aπmi (b)x i+n, (1)

for a, b ∈ R and m, n ∈ N, where πmi denotes the sum of all the(m
i

)
possible compositions of i copies of σ and m − i copies of δ in

arbitrary order.



Conditions on σ and δ

Want the Ore extension to be a ring.

x(r + s) = xr + xs.

x(rs) = (xr)s.



Conditions on σ

σ has to satisfy:

I σ(1) = 1;

I σ(a + b) = σ(a) + σ(b);

I σ(ab) = σ(a)σ(b).

So σ is an endomorphism.



Conditions on δ

δ must satisfy:

I δ(a + b) = δ(a) + δ(b);

I δ(ab) = σ(a)δ(b) + δ(a)b.

A δ satisfying this is called a σ-derivation.



A ring

For σ and δ satisfying above conditions we get a ring R[x ;σ, δ],
called an Ore extension.



Degree

Can measure the degree of elements in an Ore extension in the
same way as in the polynomial ring. Eg deg(x2 − 3x) = 2.

deg(ab) = deg(a) + deg(b)

if σ injective and R does not contain zero-divisors.



Examples

Example

If σ = idR and δ = 0 then R[x ;σ, δ] is isomorphic to R[x ], the
polynomial ring in one central indeterminate.

Example

If σ = idR then R[x ; idR , δ] is a ring of differential polynomials.

Example

If δ = 0 then R[x ;σ, 0] is a skew polynomial ring.



Examples II

Example

Take R = k[y ], σ(p(y)) = p(qy), where q ∈ k \ {0, 1} and
δ(y) = q. Then R[x ;σ, δ] is called the q-Weyl algebra.

Example

Take R = k[y ], σ = id and δ(y) = 1. Then R[x ;σ, δ] is the
ordinary Weyl algebra.



Simple skew polynomial rings

A skew polynomial rings, R[x ;σ, 0], is never simple since the ideal
generated by x is proper.

If δ is a inner derivation, i.e. δ(r) = ar − σ(r)a, then R[x ;σ, δ] is
isomorphic to R[y ;σ, 0]. In particular R[x ;σ, δ] is not simple.



Simple Ore extensions with σ 6= id

Theorem (Bavula)

Suppose that R is an integral domain, σ is an injective
endomorphism and R[x ;σ, δ] is a simple ring. Then σ = id.

Sketch.
Let k be the field of fractions of R. σ and δ extend to k. Suppose
σ(a) 6= a. For any b ∈ R we have δ(ab) = δ(ba). This gives

σ(a)δ(b) + δ(a)b = σ(b)δ(a) + δ(b)a⇔ (σ(a)− a)δ(b) = (2)

(σ(b)− b)δ(a)⇔ δ(b) =
δ(a)

σ(σ(a)− a
(σ(b)− b). (3)

So δ is an inner derivation which is a contradiction.



Simple Ore extensions with σ 6= id II

Cozzens and Faith construct a simple Ore extension R[x ;σ, δ]
where R is a division ring and σ 6= idR .



Ideal intersection property for CR[x ;idR ,δ](R).

Theorem (Öinert, R., Silvestrov)

If R is a commutative ring then CR[x ;idR ,δ](R) has the ideal
intersection property. (Meaning it has a non-zero intersection with
every non-zero ideal of R[x ; idR , δ].)

Proof.
Let I be an ideal in R[x ; idR , δ]. Take any a ∈ I . If ar − ra = 0 for
all r ∈ R we are done. If r is such that ar − ra 6= 0 then ar − ra is
a non-zero element in I of strictly lower degree than a.By induction
we continue this procedure until we obtain a non-zero element
contained in I ∩ R ′. If not sooner, this will always occur at degree
0, since R ⊆ R ′.



Ideal intersection property for R

Corollary

If R is a maximal commutative subring of R[x ; idR , δ] then R has
the ideal intersection property.



Necessary condition for simplicity

Theorem
If R[x ; idR , δ] is simple then there are no non-trivial δ-invariant
ideals of R. (R is said to be δ-simple.) Further δ is an outer
derivation.

Proof.
If I is a δ-invariant ideal in R then I · R[x ;σ, δ] is an ideal in
R[x ;σ, δ]. The necessity of δ being outer has already been
proven.

Note that for commutative R a non-zero derivation is the same as
an outer derivation.



Sufficient conditions for simplicity

Theorem (Öinert, R. and Silvestrov)

Let R be an associative ring. Then D = R[x ; idR , δ] is simple if
and only if R is δ-simple and Z (D) is a field.



Theorem (Amitsur)

Suppose that R is a simple associative ring and let δ be a
derivation on R. If we put D = R[X ; idR , δ], then the following
assertions hold:

I Every ideal of D is generated by a unique monic polynomial in
Z (D);

I There is a monic b ∈ Rδ[X ], unique up to addition of an
element k ∈ Z (R)δ, such that Z (D) = Z (R)δ[b];

I If char(R) = 0 and b 6= 1, then there is c ∈ Rδ such that
b = c + X . In that case, δ = δc ;

I If char(R) = p > 0 and b 6= 1, then there is c ∈ Rδ and
b0, . . . , bn ∈ Z (R)δ, with bn = 1, such that

b = c +
∑n

i=0 biX
pi . In that case,

∑n
i=0 biδ

pi = δc .



Theorem (Jordan)

Suppose that R is a δ-simple associative ring and let δ be a
derivation on R. If we put D = R[X ; idR , δ], then the following
assertions hold:

(a) If char(R) = 0, then D is simple if and only if δ is outer;

(b) If char(R) = p > 0, then D is simple if and only if no

derivation of the form
∑n

i=0 biδ
pi , bi ∈ Z (R)δ, and bn = 1, is

an inner derivation induced by an element in Rδ.



Part II



Non-associative rings

By a non-associative ring we mean a not necessarily associative
ring. Must have a unit and must be distributive.

The center is the set of all elements that associate and commute
with everything. In a simple non-associative ring the center is a
field.



Abstract definition

Definition
The pair (S , x) is called a non-associative Ore extension of R if the
following axioms hold:

(N1) S is a free left R-module with basis {1, x , x2, . . .};
(N2) xR ⊆ R + Rx ;

(N3) (S ,S , x) = (S , x , S) = {0}.
If (N2) is replaced by

(N2)′ [x ,R] ⊆ R;

then (S , x) is called a non-associative differential polynomial ring
over R.



Construction

Let σ and δ be additive maps such that σ(1) = 1 and δ(1) = 0. As
before we equip R[X ] with a new multiplication.

The ring structure on R[X ;σ, δ] is defined on monomials by

aXm · bX n =
∑
i∈N

aπmi (b)X i+n, (4)

for a, b ∈ R and m, n ∈ N, where πmi denotes the sum of all the(m
i

)
possible compositions of i copies of σ and m − i copies of δ in

arbitrary order.



Definition
Suppose that (S , x) is a non-associative Ore extension of R. Put
Rx = {a ∈ R | ax = xa}. We say that (S , x) is strong if at least
one of the following axioms holds:

(N4) (x ,R,Rx) = {0};
(N5) (x ,Rx ,R) = {0}.

In that case we call Rx the ring of constants of R.



Set Rσδ = {r |σ(r) = r , δ(r) = 0 }.

Theorem
Every non-associative Ore extension of R is isomorphic to a
generalized polynomial ring R[X ;σ, δ]. If the non-associative Ore
extension is strong, then σ and δ are both right Rσδ -linear or both
are Rσδ -linear.

It is easy to see that Rσδ is the ring of constants.



Theorem
Suppose that R is a non-associative ring and that δ right or left
linear over the constants. If we put D = R[X ; idR , δ], then the
following assertions hold:

(a) If R is δ-simple, then every ideal of D is generated by a
unique monic polynomial in Z (D);

(b) If R is δ-simple, then there is a monic b ∈ Rδ[X ], unique up
to addition of an element k ∈ Z (R)δ, such that
Z (D) = Z (R)δ[b];

(c) D is simple if and only if R is δ-simple and Z (D) is a field. In
that case Z (D) = Z (R)δ in which case b = 1;

(d) If R is δ-simple, δ is a derivation on R and char(R) = 0, then
either b = 1 or there is c ∈ Rδ such that b = c + X . In the
latter case, δ = δc ;

(e) If R is δ-simple, δ is a derivation on R and char(R) = p > 0,
then either b = 1 or there is c ∈ Rδ and b0, . . . , bn ∈ Z (R)δ,

with bn = 1, such that b = c +
∑n

i=0 biX
pi . In the latter

case,
∑n

i=0 biδ
pi = δc .



Associative coefficients

Theorem
Suppose that D = R[X ; idR , δ] is a non-associative differential
polynomial ring such that R is associative and all positive integers
are regular in R. If R is δ-simple but δ is not a derivation, then D
is simple.
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