Simplicity of associative and non-associative Ore extensions

Johan Richter

Mälardalen University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The non-associative part is joint work by Patrik Nystedt, Johan Öinert and myself.

Introduced by Norwegian mathematician Øystein Ore, under the name of *noncommutative polynomial rings*.

Take a ring R and consider the additive group R[x]. Want to give it a new multiplication.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ore extensions, motivation

Would like R[x] to be an associative ring. Would also like $\deg(ab) = \deg(a) + \deg(b)$ or at least $\deg(ab) \le \deg(a) + \deg(b)$. Would also like $x^n \cdot x^m = x^{n+m}$.

If $r \in R$ we must have $xr = \sigma(r)x + \delta(r)$, for some functions σ and δ .

In general we must have

$$ax^m \cdot bx^n = \sum_{i \in \mathbb{N}} a\pi_i^m(b) x^{i+n}, \tag{1}$$

for $a, b \in R$ and $m, n \in \mathbb{N}$, where π_i^m denotes the sum of all the $\binom{m}{i}$ possible compositions of *i* copies of σ and m - i copies of δ in arbitrary order.

Conditions on σ and δ

Want the Ore extension to be a ring.

$$x(r+s) = xr + xs.$$

 $x(rs) = (xr)s.$

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

Conditions on σ

 σ has to satisfy:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

So σ is an endomorphism.

Conditions on δ

- δ must satisfy:
 - δ(a + b) = δ(a) + δ(b);
 δ(ab) = σ(a)δ(b) + δ(a)b.
- A δ satisfying this is called a $\sigma\text{-derivation.}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For σ and δ satisfying above conditions we get a ring $R[x; \sigma, \delta]$, called an Ore extension.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Can measure the *degree* of elements in an Ore extension in the same way as in the polynomial ring. Eg $deg(x^2 - 3x) = 2$.

$$\deg(ab) = \deg(a) + \deg(b)$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

if σ injective and R does not contain zero-divisors.

Examples

Example

If $\sigma = id_R$ and $\delta = 0$ then $R[x; \sigma, \delta]$ is isomorphic to R[x], the polynomial ring in one central indeterminate.

Example

If $\sigma = id_R$ then $R[x; id_R, \delta]$ is a ring of differential polynomials.

Example

If $\delta = 0$ then $R[x; \sigma, 0]$ is a skew polynomial ring.

Examples II

Example

Take R = k[y], $\sigma(p(y)) = p(qy)$, where $q \in k \setminus \{0, 1\}$ and $\delta(y) = q$. Then $R[x; \sigma, \delta]$ is called the *q*-Weyl algebra.

Example

Take R = k[y], $\sigma = id$ and $\delta(y) = 1$. Then $R[x; \sigma, \delta]$ is the ordinary Weyl algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simple skew polynomial rings

A skew polynomial rings, $R[x; \sigma, 0]$, is never simple since the ideal generated by x is proper.

If δ is a inner derivation, i.e. $\delta(r) = ar - \sigma(r)a$, then $R[x; \sigma, \delta]$ is isomorphic to $R[y; \sigma, 0]$. In particular $R[x; \sigma, \delta]$ is not simple.

Simple Ore extensions with $\sigma \neq id$

Theorem (Bavula)

Suppose that R is an integral domain, σ is an injective endomorphism and $R[x; \sigma, \delta]$ is a simple ring. Then $\sigma = id$.

Sketch.

Let k be the field of fractions of R. σ and δ extend to k. Suppose $\sigma(a) \neq a$. For any $b \in R$ we have $\delta(ab) = \delta(ba)$. This gives

$$\sigma(a)\delta(b) + \delta(a)b = \sigma(b)\delta(a) + \delta(b)a \Leftrightarrow (\sigma(a) - a)\delta(b) = (2)$$

$$(\sigma(b) - b)\delta(a) \Leftrightarrow \delta(b) = \frac{\delta(a)}{\sigma(\sigma(a) - a}(\sigma(b) - b).$$
 (3)

So δ is an inner derivation which is a contradiction.

Simple Ore extensions with $\sigma \neq id II$

Cozzens and Faith construct a simple Ore extension $R[x; \sigma, \delta]$ where R is a division ring and $\sigma \neq id_R$.

Ideal intersection property for $C_{R[x;id_R,\delta]}(R)$.

Theorem (Öinert, R., Silvestrov)

If R is a commutative ring then $C_{R[x;id_R,\delta]}(R)$ has the ideal intersection property. (Meaning it has a non-zero intersection with every non-zero ideal of $R[x;id_R,\delta]$.)

Proof.

Let *I* be an ideal in $R[x; id_R, \delta]$. Take any $a \in I$. If ar - ra = 0 for all $r \in R$ we are done. If *r* is such that $ar - ra \neq 0$ then ar - ra is a non-zero element in *I* of strictly lower degree than *a*.By induction we continue this procedure until we obtain a non-zero element contained in $I \cap R'$. If not sooner, this will always occur at degree 0, since $R \subseteq R'$.

Ideal intersection property for R

Corollary

If R is a maximal commutative subring of $R[x; id_R, \delta]$ then R has the ideal intersection property.

Necessary condition for simplicity

Theorem

If $R[x; id_R, \delta]$ is simple then there are no non-trivial δ -invariant ideals of R. (R is said to be δ -simple.) Further δ is an outer derivation.

Proof.

If I is a δ -invariant ideal in R then $I \cdot R[x; \sigma, \delta]$ is an ideal in $R[x; \sigma, \delta]$. The necessity of δ being outer has already been proven.

Note that for commutative R a non-zero derivation is the same as an outer derivation.

Sufficient conditions for simplicity

Theorem (Öinert, R. and Silvestrov)

Let R be an associative ring. Then $D = R[x; id_R, \delta]$ is simple if and only if R is δ -simple and Z(D) is a field.

Theorem (Amitsur)

Suppose that R is a simple associative ring and let δ be a derivation on R. If we put $D = R[X; id_R, \delta]$, then the following assertions hold:

- Every ideal of D is generated by a unique monic polynomial in Z(D);
- There is a monic b ∈ R_δ[X], unique up to addition of an element k ∈ Z(R)_δ, such that Z(D) = Z(R)_δ[b];
- If char(R) = 0 and $b \neq 1$, then there is $c \in R_{\delta}$ such that b = c + X. In that case, $\delta = \delta_c$;
- If char(R) = p > 0 and $b \neq 1$, then there is $c \in R_{\delta}$ and $b_0, \ldots, b_n \in Z(R)_{\delta}$, with $b_n = 1$, such that $b = c + \sum_{i=0}^{n} b_i X^{p^i}$. In that case, $\sum_{i=0}^{n} b_i \delta^{p^i} = \delta_c$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Jordan)

Suppose that R is a δ -simple associative ring and let δ be a derivation on R. If we put $D = R[X; id_R, \delta]$, then the following assertions hold:

- (a) If char(R) = 0, then D is simple if and only if δ is outer;
- (b) If $\operatorname{char}(R) = p > 0$, then D is simple if and only if no derivation of the form $\sum_{i=0}^{n} b_i \delta^{p^i}$, $b_i \in Z(R)_{\delta}$, and $b_n = 1$, is an inner derivation induced by an element in R_{δ} .

Part II

By a non-associative ring we mean a not necessarily associative ring. Must have a unit and must be distributive.

The *center* is the set of all elements that associate and commute with everything. In a simple non-associative ring the center is a field.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Abstract definition

Definition

The pair (S, x) is called a *non-associative Ore extension* of R if the following axioms hold:

(N1) S is a free left R-module with basis $\{1, x, x^2, \ldots\}$;

(N2) $xR \subseteq R + Rx$; (N3) $(S, S, x) = (S, x, S) = \{0\}$. If (N2) is replaced by (N2)' $[x, R] \subseteq R$; then (S, x) is called a *non-associative differential polynomial ring over* R.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Construction

Let σ and δ be additive maps such that $\sigma(1) = 1$ and $\delta(1) = 0$. As before we equip R[X] with a new multiplication.

The ring structure on $R[X; \sigma, \delta]$ is defined on monomials by

$$aX^{m} \cdot bX^{n} = \sum_{i \in \mathbb{N}} a\pi_{i}^{m}(b)X^{i+n}, \qquad (4)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for $a, b \in R$ and $m, n \in \mathbb{N}$, where π_i^m denotes the sum of all the $\binom{m}{i}$ possible compositions of *i* copies of σ and m - i copies of δ in arbitrary order.

Definition

Suppose that (S, x) is a non-associative Ore extension of R. Put $R_x = \{a \in R \mid ax = xa\}$. We say that (S, x) is *strong* if at least one of the following axioms holds:

(N4)
$$(x, R, R_x) = \{0\};$$

(N5) $(x, R_x, R) = \{0\}.$

In that case we call R_x the ring of constants of R.

Set
$$R^{\sigma}_{\delta} = \{r | \sigma(r) = r, \ \delta(r) = 0\}.$$

Theorem

Every non-associative Ore extension of R is isomorphic to a generalized polynomial ring $R[X; \sigma, \delta]$. If the non-associative Ore extension is strong, then σ and δ are both right R^{σ}_{δ} -linear or both are R^{σ}_{δ} -linear.

It is easy to see that R^{σ}_{δ} is the ring of constants.

Theorem

Suppose that R is a non-associative ring and that δ right or left linear over the constants. If we put $D = R[X; id_R, \delta]$, then the following assertions hold:

- (a) If R is δ-simple, then every ideal of D is generated by a unique monic polynomial in Z(D);
- (b) If R is δ -simple, then there is a monic $b \in R_{\delta}[X]$, unique up to addition of an element $k \in Z(R)_{\delta}$, such that $Z(D) = Z(R)_{\delta}[b]$;
- (c) D is simple if and only if R is δ -simple and Z(D) is a field. In that case $Z(D) = Z(R)_{\delta}$ in which case b = 1;
- (d) If R is δ -simple, δ is a derivation on R and char(R) = 0, then either b = 1 or there is $c \in R_{\delta}$ such that b = c + X. In the latter case, $\delta = \delta_c$;
- (e) If R is δ -simple, δ is a derivation on R and char(R) = p > 0, then either b = 1 or there is $c \in R_{\delta}$ and $b_0, \ldots, b_n \in Z(R)_{\delta}$, with $b_n = 1$, such that $b = c + \sum_{i=0}^{n} b_i X^{p^i}$. In the latter case, $\sum_{i=0}^{n} b_i \delta^{p^i} = \delta_c$.

Associative coefficients

Theorem

Suppose that $D = R[X; id_R, \delta]$ is a non-associative differential polynomial ring such that R is associative and all positive integers are regular in R. If R is δ -simple but δ is not a derivation, then D is simple.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

- S. A. Amitsur, Derivations in simple rings, *Proc. London Math. Soc. (3)* **7**, 87–112 (1957).
- D. A. Jordan, *Ore extensions and Jacobson rings*, Ph.D. thesis, University of Leeds (1975).
- P. Nystedt, J. Öinert and J. Richter, Non-associative Ore extensions, *arXiv*:1509.01436
- J. Öinert, J. Richter and S. D. Silvestrov, Maximal commutative subrings and simplicity of Ore extensions, *J. Algebra Appl.*, **12**(4), 1250192, 16 pp. (2013).