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Definition

Let (for simplicity) K be a field and A be a K-algebra,
generated by finite-dimensional vector space V . Define a
filtration {Fn}n∈N of A as follows:

• F0 = {r1}r∈K if A has a unit 1, otherwise F0 = {0},
• F1 = F0 + V ,

• Fn = Fn−1 +

n−1∑
k=1

Fk · Fn−k for n > 1.

Then the Hilbert series for A (when generated by V ) is

H(t) =

∞∑
n=0

(dimFn)tn.

This can converge for small t, but mostly we’ll regard it as a
formal power series.
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If A is associative, then

Fn = Fn−1 + V n, where V n =

{
n∏
k=1

ak

∣∣∣∣∣ a1, . . . , an ∈ V

}
.

If furthermore A is graded so that A =
⊕∞

n=0 V
n, authors may

prefer to work with a graded variant of the Hilbert series

Hgraded(t) =

∞∑
n=0

(dimV n)tn,

but a point of making them series is that translations between
the two are easy; dimV n = dimFn − dimFn−1 would imply

Hgraded(t) = dimF0 +

∞∑
n=1

(dimFn − dimFn−1)tn = (1− t)H(t)
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Some examples

For a commutative polynomial algebra in r variables,

dimFn =

(
n+ r

r

)
and H(t) =

1

(1− t)r+1
.

For a free associative algebra in r variables,

dimFn =

n∑
k=0

rk and H(t) =
1

(1− rt)(1− t)
.

For a free nonassociative algebra generated by r elements,

H(t) =
1−
√

1− 4rt

2(1− t)
and dimFn =

n∑
k=1

1

k

(
2k − 2

k − 1

)
rk.
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Counting variables

The variable t is called a counting variable; its powers are
primarily used as labels (distinguishing different counts within a
single series).
Having several counting variables can let one keep a more
fine-grained track of things.

In the case of a hom-algebra, one typically wants a separate
counting variable for how many times the hom α has been
applied, since otherwise the pieces might be
infinite-dimensional.

Fn,m := Fn−1,m + Fn,m−1 + α(Fn,m−1) +

n−1∑
k=1

m∑
l=0

Fk,lFn−k,m−l

H(s, t) =

∞∑
n=0

∞∑
m=0

(dimFn,m)smtn
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Hilbert series for subspaces

One can also define a Hilbert series HI⊆A for a subspace I of
an algebra A:

HI⊆A(t) =

∞∑
n=0

dim(I ∩ Fn)tn

If the filtration on the quotient algebra A/I is generated by
{x+ I |x ∈ V }, then

HA(t) = HI⊆A(t) +HA/I(t).
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An application: the Ore domain condition

Recall that in commutative algebra, it is a sufficient and
necessary condition for an algebra to have a field of fractions
that it has no zero divisors.

In noncommutative algebra, having no zero divisors is no longer
sufficient; one must also require that two arbitrary
denominators a and b have a common same-side multiple

∃c, d 6= 0: ac = bd.

An Ore domain is an associative ring without zero divisors and
with common same-side multiples.

Theorem
Every associative algebra A without zero divisors for which the
Hilbert series has radius of convergence 1 is an Ore domain.
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Proof
For the contrapositive, assume a, b ∈ A \ {0} have no common
right multiple other than 0. Then for every n ∈ N,

(a · Fn) ∩ (b · Fn) = {0}.

This implies that the sum a · Fn + b · Fn is direct, so

dim(a · Fn + b · Fn) = dimFn + dimFn = 2 dimFn.

Now let m > 0 be minimal such that a, b ∈ Fm. Since {Fn}n∈N
is a filtration, we have

a · Fn + b · Fn ⊆ Fm+n and thus

2 dimFn = dim(a · Fn + b · Fn) 6 dimFm+n

for all n ∈ N. It follows that the terms of H(t) do not decrease
for t > 2−1/m, implying in particular that the radius of
convergence is strictly less than 1.
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Coordinate view

Some traditions emphasize stating everything in a
coordinate-free form – the above definitions adhere to this – but
in order to get anywhere calculation-vise, it is often necessary
to introduce coordinates.

Let X be some basis of the degree 1 subspace V .
Let Y be the multiplicative closure of X. (Include multiplicative
unit if there is one. Ditto other multiplication-like operations.)

By construction, Y ∩ Fn spans Fn.

We can (abstractly) pick a basis B ⊆ Y such that B ∩ Fn is a
basis of Fn. Then

H(t) =

∞∑
n=0

|B ∩ Fn| tn

which is a discrete formula for the Hilbert series.
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Constructively picking a basis

It is convenient to switch perspective, and present the algebra
A as a quotient of some suitable free algebra F generated by X.
Then Y is a basis of F , and B is a basis of the subspace of
normal forms for elements of the quotient A.

Example

If A is associative, we can take F = K〈X〉 and Y = X∗ (the set
of words on the alphabet X – essentially the set of all finite
strings of characters from X).
Y ∩ Fn is the set of words of length at most n.

Example

If A is a hom-algebra, we can take F to be the free K-algebra
with signature Ω =

{
α(), µ(,)

}
(i.e., unary “hom” operation α

and binary “multiplication” operation µ) generated by X, and
Y to be the set of all formal terms on X with that signature Ω.
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Diamond Lemma

If reduction to normal form (for representing elements of A) is
described using a confluent rewrite system, then by the
Diamond Lemma, a basis B for the set of normal form consists
of precisely those elements of Y that no rewrite rule acts
nontrivially upon.

If moreover all rewrite rules map each Fn into itself (i.e.,
doesn’t raise the degree), then the above basis B gives the right
counts for the Hilbert series.

Effectively, B is characterised as the subset of Y consisting of
all words that don’t contain certain forbidden subwords.



Hilbert series Normal forms Formal language theory

Example: Noncommutative circle

The noncommutative circle algebra is

A = K〈x, y〉
/
〈x2 + y2 − 1〉.

The generator of that ideal can be turned into the rewrite rule
y2 → 1− x2, but that rule alone does not constitute a confluent
rewrite system. For that, one needs

{y2 → 1− x2, yx2 → x2y}.

Hence

H(t) =

∞∑
n=0

∣∣∣∣∣
{
w ∈ {x, y}∗

∣∣∣∣w has length at most n and does
not have y2 or yx2 as subword

}∣∣∣∣∣ tn
is the Hilbert series for the noncommutative circle algebra.
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Formal languages

A subset of X∗ is called a formal (word) language.
A subset of the set of all formal terms over a given signature is
a formal tree language.

(Since a language is only a set of words — a priori there’s no
grammar, semantics, or anything — one might feel vocabulary
would be a more apt term, but this is the way it is.)

Formal language theory deals with (amongst other things)
finitary descriptions of possibly infinite languages. Interesting
classes include:

• regular languages

• context-free languages

• parsing expression languages
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Algebra of word languages
Although a language L ⊆ X∗ is by definition a set, there are
advantages to encoding it as the formal power series∑

w∈L
w ∈ B〈〈X〉〉.

B = {0, 1} denotes the boolean semiring, which has 1 + 1 = 1;
effectively + is or and · is and.

Addition in B〈〈X〉〉 corresponds to union of languages.
Multiplication is concatenation(∑

u∈L1

u

)(∑
v∈L2

v

)
=

∑
w∈{w∈X∗ |w = uv for some u ∈ L1, v ∈ L2}

w

The zero 0 ∈ B〈〈X〉〉 is the empty language ∅. The unit
1 ∈ B〈〈X〉〉 is (the language whose only element is) the empty
word. The power series x is the language whose only element is
the length 1 word x.
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More language algebra: regular expressions

Traditionally one also defines three unary operations on word
languages:

a∗ =
∑∞

n=0
an Kleene star; zero-or-more

a+ =
∑∞

n=1
an Kleene plus; one-or-more

a? = 1 + a zero-or-one

a∗ and a+ would not be defined for arbitrary power series in
general, but they are defined on the whole of B〈〈X〉〉, since B
has 1 + 1 = 1.

Theorem
The set of regular word languages on X is the smallest subset of
B〈〈X〉〉 which is closed under addition, multiplication, and the
Kleene star, and which contains 0, 1, and the elements of X.
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Back to the example

The words which are reducible under the rewrite system

{y2 → 1− x2, yx2 → x2y}

are those of the language

(x + y)∗(y2 + yx2)(x + y)∗.

Its complement — the irreducible words that make up a basis
for the normal form — is the regular language

x∗(yx)∗y?

Theorem
The set complement of a regular language is also a regular
language.
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Automaton description of languages
As is typical in formal language theory, regular languages also
admit a description in terms of automata.
A Deterministic Finite Automaton (DFA) is a tuple (S, φ, i, T ),
where

• S is a finite set,

• φ : X −→ SS is a function mapping the alphabet X to
functions S −→ S, which we extend to a monoid
homomorphism X∗ −→ SS ,

• i ∈ S is called the initial state, and

• T ⊆ S is called the set of accepting states.

The language accepted by (S, φ, i, T ) is{
w ∈ X∗

∣∣φ(w)(i) ∈ T
}

.

(This reads the word w right-to-left. One could do it the other
way around.)
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Automaton description of languages 2

A nondeterministic finite automaton (NFA) is a tuple
(G,ψ, s, t) where

• G is a finite digraph (its vertices are the states of the
automaton),

• s, t ∈ V(G) are the initial and final respectively states,

• ψ(e) ⊆ X ∪ {1} for all e ∈ E(G).

A word w is in the language accepted by (G,ψ, s, t) if there is a
walk u0 e1 u1 . . . enun in G and factorisation w = w1 · · ·wn such
that u0 = s, un = t, and wi ∈ ψ(ei) for all i = 1, . . . , n.

Theorem
The following are equivalent claims about a language L ⊆ X∗:
1. L is the value of a regular expression in B〈〈X〉〉.
2. L is the language accepted by some DFA.

3. L is the language accepted by some NFA.
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Translations between descriptions

RE to NFA is an easy structural recursion.

NFA to DFA is the famous powerset construction.

DFA to RE can be done with matrices over B〈〈X〉〉.
Let {es}s∈S be the “standard basis” vectors. Let
t =

∑
s∈T es. Let A =

∑
x∈X

∑
s∈S eφ(x)(s)xe

T
s .

Then the language accepted by the DFA
(S, φ, i, T ) is

tTA∗ei = tT(I −A)−1ei

where (I −A)−1 can be calculated using Gaussian
elimination in Q〈〈X〉〉|S|×|S|.

The resulting RE in the last case can also be used to calculate
the corresponding Hilbert series; the key is that since it starts
out deterministic, it generates words at most once.
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Again with the example

The normal form basis was

x∗(yx)∗y?

where a∗ =
∑∞

n=0 a
n = (1− a)−1 and a? = 1 + a. The

generators x and y are both degree 1, so they are worth t in the
counting picture. The graded Hilbert series is thus

Hgraded(t) = t∗(t2)∗t? =
1

1− t
1

1− t2
(1 + t) =

1

(1− t)2

and the non-graded series is H(t) =
1

(1− t)3
, whereas a

commutative circle algebra would have

H(t) =
1 + t

(1− t)2
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More general classes of word languages
Context-free languages are, thanks to the Backus–Naur form

(BNF) of grammars the norm (dogma?) for
computer language syntax.
In B〈〈X〉〉, the languages are solutions to systems
of polynomial equations that are immediate from
the grammar.
But CFL are at heart nondeterministic, so there is
no obvious way to describe their complements, and
B〈〈X〉〉 equations cannot easily be carried over to
counting equations.

Parsing expression languages are similar to CFL, but replaces
addition/union/choice by prioritised choice.
Pro: Becomes deterministic. Language class closed
under taking complement. Can characterise several
languages of mathematical interest that are not CFL.
Con: Not generative. No general link to Hilbert
series.
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Tree languages

For nonassociative algebra, one rather wants tree languages.
Here it turns out that regular languages work pretty much as
you’re used to context-free languages working, but with all the
advantages of determinism. (The bad sides of word CFLs are
due to the nesting structure being ambiguous.)

The tree language L of free hom-algebra monomials (in Polish
notation) satisfies the equation

L = X + αL+ µLL

which translates to the Hilbert series equation

Hgraded(s, t) = |X|t+ sHgraded(s, t) +Hgraded(s, t)2

if using tas counting variable for generators and s as counting
variable for applications of the hom α.
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