On non-associative Weyl algebras and a Hilbert's basis theorem 1st meeting of the Swedish Network for Algebra and Geometry – Linköping, 2018 Per Bäck, <per.back@mdh.se> MäLARDALEN UNIVERSITY September 28, 2018 Hom-associative algebras – algebras with the associativity twisted by a homomorphism – arose with the introduction of hom-Lie algebras by Hartwig, Larsson and Silvestrov [HLS03]. [[]HLS03] J.T. Hartwig, D. Larsson, and S.D. Silvestrov. "Deformations of Lie algebras using σ -derivations". *Preprints in Math. Sc.*, 2003:32, Lund University (2003). Hom-associative algebras – algebras with the associativity twisted by a homomorphism – arose with the introduction of hom-Lie algebras by Hartwig, Larsson and Silvestrov [HLS03]. Non-commutative polynomial rings – or Ore extensions – were introduced 70 years earlier by \emptyset . Ore [Ore33], generalized to non-associative such by Nystedt, Öinert and Richter [NÖR18]. [[]HLS03] J.T. Hartwig, D. Larsson, and S.D. Silvestrov. "Deformations of Lie algebras using σ -derivations". *Preprints in Math. Sc.*, 2003:32, Lund University (2003). [[]Ore33] O. Ore. "Theory of Non-Commutative Polynomials". Ann. of Math. **34**(3) (1933). [[]NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". *Isr. J. Math.* 224(1) (2018). Hom-associative algebras – algebras with the associativity twisted by a homomorphism – arose with the introduction of hom-Lie algebras by Hartwig, Larsson and Silvestrov [HLS03]. Non-commutative polynomial rings – or Ore extensions – were introduced 70 years earlier by \emptyset . Ore [Ore33], generalized to non-associative such by Nystedt, Öinert and Richter [NÖR18]. The former have a known non-associative structure: what about hom-associative Ore extensions? [[]HLS03] J.T. Hartwig, D. Larsson, and S.D. Silvestrov. "Deformations of Lie algebras using σ -derivations". *Preprints in Math. Sc.*, 2003:32, Lund University (2003). [[]Ore33] O. Ore. "Theory of Non-Commutative Polynomials". Ann. of Math. **34**(3) (1933). [[]NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". *Isr. J. Math.* 224(1) (2018). **Definition** (Hom-associative algebra). A hom-associative algebra over an associative, commutative, and unital ring R, is a triple (M,\cdot,α) consisting of an R-module M, a binary operation $\cdot : M \times M \to M$ linear in both arguments, and a linear map $\alpha : M \to M$ satisfying, for all $a,b,c \in M$, $$\alpha(a) \cdot (b \cdot c) = (a \cdot b) \cdot \alpha(c).$$ **Definition** (Hom-associative algebra). A hom-associative algebra over an associative, commutative, and unital ring R, is a triple (M,\cdot,α) consisting of an R-module M, a binary operation $\cdot : M \times M \to M$ linear in both arguments, and a linear map $\alpha : M \to M$ satisfying, for all $a,b,c \in M$, $$\alpha(a) \cdot (b \cdot c) = (a \cdot b) \cdot \alpha(c).$$ **Definition** (Hom-associative ring). A hom-associative ring is a hom-associative algebra over the ring of integers. **Definition** (Hom-associative algebra). A hom-associative algebra over an associative, commutative, and unital ring R, is a triple (M,\cdot,α) consisting of an R-module M, a binary operation $\cdot : M \times M \to M$ linear in both arguments, and a linear map $\alpha : M \to M$ satisfying, for all $a,b,c \in M$, $$\alpha(a) \cdot (b \cdot c) = (a \cdot b) \cdot \alpha(c).$$ **Definition** (Hom-associative ring). A hom-associative ring is a hom-associative algebra over the ring of integers. **Definition** (Hom-ideal). A right (left) hom-ideal of a hom-associative algebra is a right (left) algebra ideal I such that $\alpha(I) \subseteq I$. If I is both a left and a right hom-ideal, we simply call it a hom-ideal. **Definition** (Weakly unital algebra). Let (M, \cdot, α) be a hom-associative algebra. If for all $a \in M$, $e \cdot a = a \cdot e = \alpha(a)$ for some $e \in M$, we say that (M, \cdot, α) is weakly unital with weak unit e. **Definition** (Weakly unital algebra). Let (M, \cdot, α) be a hom-associative algebra. If for all $a \in M$, $e \cdot a = a \cdot e = \alpha(a)$ for some $e \in M$, we say that (M, \cdot, α) is weakly unital with weak unit e. **Proposition** (Weak unitalization [BRS18]). Any multiplicative hom-associative algebra can be embedded in a multiplicative, weakly unital hom-associative algebra. [[]BRS18] P. Bäck, J. Richter, and S. Silvestrov. "Hom-associative Ore extensions and weak unitalizations". *Int. Electron. J. Algebra* **24** (2018). **Definition** (Weakly unital algebra). Let (M, \cdot, α) be a hom-associative algebra. If for all $a \in M$, $e \cdot a = a \cdot e = \alpha(a)$ for some $e \in M$, we say that (M, \cdot, α) is weakly unital with weak unit e. **Proposition** (Weak unitalization [BRS18]). Any multiplicative hom-associative algebra can be embedded in a multiplicative, weakly unital hom-associative algebra. **Proposition** (The Yau twist [Yau09]). Let A be a unital, associative algebra, α an algebra endomorphism on A and define $*: A \times A \to A$ by $a*b := \alpha(a \cdot b)$ for all $a, b \in A$. Then $(A, *, \alpha)$ is a weakly unital hom-associative algebra with weak unit 1_A . [[]BRS18] P. Bäck, J. Richter, and S. Silvestrov. "Hom-associative Ore extensions and weak unitalizations". *Int. Electron. J. Algebra* **24** (2018). [[]Yau09] D. Yau. "Hom-Algebras and Homology". J. Lie Theory 19.2 (2009). # Preliminaries: Non-associative Ore extensions ## Preliminaries: Non-associative Ore extensions **Definition** (Left *R*-additivity). If *R* is a non-associative, non-unital ring, we say that a map $\beta: R \to R$ is left *R*-additive if for all $r, s, t \in R$, $r \cdot \beta(s+t) = r \cdot (\beta(s) + \beta(t))$. ### Preliminaries: Non-associative Ore extensions **Definition** (Left *R*-additivity). If *R* is a non-associative, non-unital ring, we say that a map $\beta: R \to R$ is left *R*-additive if for all $r, s, t \in R$, $r \cdot \beta(s+t) = r \cdot (\beta(s) + \beta(t))$. Given a non-associative, non-unital ring R with left R-additive maps $\delta\colon R\to R$ and $\sigma\colon R\to R$, by a non-associative, non-unital Ore extension of R, $R[x;\sigma,\delta]$, we mean $\left\{\sum_{i\in\mathbb{N}}a_ix^i\right\}$, finitely many $a_i\in R$ non-zero, ### Preliminaries: non-associative Ore extensions **Definition** (Left *R*-additivity). If *R* is a non-associative, non-unital ring, we say that a map $\beta \colon R \to R$ is left *R*-additive if for all $r, s, t \in R$, $r \cdot \beta(s+t) = r \cdot (\beta(s) + \beta(t))$. Given a non-associative, non-unital ring R with left R-additive maps $\delta\colon R\to R$ and $\sigma\colon R\to R$, by a non-associative, non-unital Ore extension of R, $R[x;\sigma,\delta]$, we mean $\left\{\sum_{i\in\mathbb{N}}a_ix^i\right\}$, finitely many $a_i\in R$ non-zero, endowed with the addition $$\sum_{i \in \mathbb{N}} a_i x^i + \sum_{i \in \mathbb{N}} b_i x^i := \sum_{i \in \mathbb{N}} (a_i + b_i) x^i, \quad a_i, b_i \in R,$$ two polynomials being equal iff their coefficients are, $\forall a, b \in R$, $$ax^m \cdot bx^n := \sum_{i \in \mathbb{N}} \left(a \cdot \pi_i^m(b) \right) x^{i+n}. \tag{1}$$ ## Preliminaries: non-associative Ore extensions **Definition** (Left R-additivity). If R is a non-associative, non-unital ring, we say that a map $\beta: R \to R$ is left R-additive if for all $r, s, t \in R$, $r \cdot \beta(s+t) = r \cdot (\beta(s) + \beta(t))$. Given a non-associative, non-unital ring R with left R-additive maps $\delta \colon R \to R$ and $\sigma \colon R \to R$, by a non-associative, non-unital Ore extension of R, $R[x; \sigma, \delta]$, we mean $\{\sum_{i \in \mathbb{N}} a_i x^i\}$, finitely many $a_i \in R$ non-zero, endowed with the addition $$\sum_{i \in \mathbb{N}} a_i x^i + \sum_{i \in \mathbb{N}} b_i x^i := \sum_{i \in \mathbb{N}} (a_i + b_i) x^i, \quad a_i, b_i \in R,$$ two polynomials being equal iff their coefficients are, $\forall a, b \in R$, $$ax^{m} \cdot bx^{n} := \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{m}(b) \right) x^{i+n}. \tag{1}$$ Here π_i^m is the sum of all $\binom{m}{i}$ compositions of i copies of σ and m-i copies of δ . For example $\pi_0^0 = \mathrm{id}_R$ and $\pi_1^2 = \sigma \circ \delta + \delta \circ \sigma$. Imposing distributivity of the multiplication over addition makes $R[x; \sigma, \delta]$ a ring. $$ax^0 \cdot bx^0 = \sum \left(a \cdot \pi_i^0(b)\right) x^{i+0} = (a \cdot b) x^0, \text{ so } R \cong Rx^0,$$ $$ax^0 \cdot bx^0 = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_i^0(b) \right) x^{i+0} = (a \cdot b) x^0, \text{ so } R \cong Rx^0,$$ $$a \cdot bx = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_i^0(b) \right) x^{i+1} = (a \cdot b) x,$$ $$\begin{split} ax^0 \cdot bx^0 &= \sum_{i \in \mathbb{N}} \left(a \cdot \pi_i^0(b) \right) x^{i+0} = (a \cdot b) x^0, \text{ so } R \cong Rx^0, \\ a \cdot bx &= \sum_{i \in \mathbb{N}} \left(a \cdot \pi_i^0(b) \right) x^{i+1} = (a \cdot b) x, \\ ax \cdot b &= \sum_{i \in \mathbb{N}} \left(a \cdot \pi_i^1(b) \right) x^{i+0} = \left(a \cdot \sigma(b) \right) x + a \cdot \delta(b). \end{split}$$ $$ax^{0} \cdot bx^{0} = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+0} = (a \cdot b)x^{0}, \text{ so } R \cong Rx^{0},$$ $$a \cdot bx = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+1} = (a \cdot b)x,$$ $$ax \cdot b = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{1}(b) \right) x^{i+0} = \left(a \cdot \sigma(b) \right) x + a \cdot \delta(b).$$ **Remark.** If R contains a unit, we write x for the formal sum $\sum_{i\in\mathbb{N}} a_i x^i$ with $a_1=1$ and $a_i=0$ when $i\neq 1$. It does not necessarily make sense to think of x as an element of the non-associative Ore extension if R is not unital. $$ax^{0} \cdot bx^{0} = \sum_{i \in \mathbb{N}} (a \cdot \pi_{i}^{0}(b))x^{i+0} = (a \cdot b)x^{0}, \text{ so } R \cong Rx^{0},$$ $$a \cdot bx = \sum_{i \in \mathbb{N}} (a \cdot \pi_{i}^{0}(b))x^{i+1} = (a \cdot b)x,$$ $$ax \cdot b = \sum_{i \in \mathbb{N}} (a \cdot \pi_{i}^{1}(b))x^{i+0} = (a \cdot \sigma(b))x + a \cdot \delta(b).$$ **Remark.** If R contains a unit, we write x for the formal sum $\sum_{i\in\mathbb{N}} a_i x^i$ with $a_1=1$ and $a_i=0$ when $i\neq 1$. It does not necessarily make sense to think of x as an element of the non-associative Ore extension if R is not unital. **Definition** (σ -derivation). Let R be a non-unital, non-associative ring where σ is an endomorphism and δ an additive map on R. Then δ is called a σ -derivation if $\delta(a \cdot b) = \sigma(a) \cdot \delta(b) + \delta(a) \cdot b$ holds for all $a, b \in R$. If $\sigma = \mathrm{id}_R$, δ is a derivation. **Definition** (Homogeneous map). Let $R[x; \sigma, \delta]$ be a non-associative, non-unital Ore extension of a non-associative, non-unital ring R. **Definition** (Homogeneous map). Let $R[x; \sigma, \delta]$ be a non-associative, non-unital Ore extension of a non-associative, non-unital ring R. If $\alpha \colon R \to R$ is any (additive) map, we may extend it homogeneously to $R[x; \sigma, \delta]$ by $\alpha(ax^m) := \alpha(a)x^m$ (imposing additivity). **Definition** (Homogeneous map). Let $R[x; \sigma, \delta]$ be a non-associative, non-unital Ore extension of a non-associative, non-unital ring R. If $\alpha \colon R \to R$ is any (additive) map, we may extend it homogeneously to $R[x; \sigma, \delta]$ by $\alpha(ax^m) := \alpha(a)x^m$ (imposing additivity). **Definition** (Homogeneous map). Let $R[x; \sigma, \delta]$ be a non-associative, non-unital Ore extension of a non-associative, non-unital ring R. If $\alpha \colon R \to R$ is any (additive) map, we may extend it homogeneously to $R[x; \sigma, \delta]$ by $\alpha(ax^m) := \alpha(a)x^m$ (imposing additivity). $$(a \cdot b) \cdot \delta(\alpha(c)) = (a \cdot b) \cdot \alpha(\delta(c)), \tag{2}$$ **Definition** (Homogeneous map). Let $R[x; \sigma, \delta]$ be a non-associative, non-unital Ore extension of a non-associative, non-unital ring R. If $\alpha \colon R \to R$ is any (additive) map, we may extend it homogeneously to $R[x; \sigma, \delta]$ by $\alpha(ax^m) := \alpha(a)x^m$ (imposing additivity). $$(a \cdot b) \cdot \delta(\alpha(c)) = (a \cdot b) \cdot \alpha(\delta(c)), \tag{2}$$ $$(a \cdot b) \cdot \sigma(\alpha(c)) = (a \cdot b) \cdot \alpha(\sigma(c)), \tag{3}$$ **Definition** (Homogeneous map). Let $R[x; \sigma, \delta]$ be a non-associative, non-unital Ore extension of a non-associative, non-unital ring R. If $\alpha \colon R \to R$ is any (additive) map, we may extend it homogeneously to $R[x; \sigma, \delta]$ by $\alpha(ax^m) := \alpha(a)x^m$ (imposing additivity). $$(a \cdot b) \cdot \delta(\alpha(c)) = (a \cdot b) \cdot \alpha(\delta(c)), \tag{2}$$ $$(a \cdot b) \cdot \sigma(\alpha(c)) = (a \cdot b) \cdot \alpha(\sigma(c)), \tag{3}$$ $$\alpha(a) \cdot \sigma(b \cdot c) = \alpha(a) \cdot (\sigma(b) \cdot \sigma(c)), \tag{4}$$ **Definition** (Homogeneous map). Let $R[x; \sigma, \delta]$ be a non-associative, non-unital Ore extension of a non-associative, non-unital ring R. If $\alpha \colon R \to R$ is any (additive) map, we may extend it homogeneously to $R[x; \sigma, \delta]$ by $\alpha(ax^m) := \alpha(a)x^m$ (imposing additivity). $$(a \cdot b) \cdot \delta(\alpha(c)) = (a \cdot b) \cdot \alpha(\delta(c)), \tag{2}$$ $$(a \cdot b) \cdot \sigma(\alpha(c)) = (a \cdot b) \cdot \alpha(\sigma(c)), \tag{3}$$ $$\alpha(a) \cdot \sigma(b \cdot c) = \alpha(a) \cdot (\sigma(b) \cdot \sigma(c)), \qquad (4)$$ $$\alpha(a) \cdot \delta(b \cdot c) = \alpha(a) \cdot (\sigma(b) \cdot \delta(c) + \delta(b) \cdot c). \tag{5}$$ ## Sufficient conditions for hom-associativity ### SUFFICIENT CONDITIONS FOR HOM-ASSOCIATIVITY **Proposition** ([BRS18). Assume $\alpha \colon R \to R$ is the twisting map of a non-unital, hom-associative ring R, and extend the map homogeneously to $R[x; \sigma, \delta]$. #### Sufficient conditions for hom-associativity **Proposition** ([BRS18). Assume $\alpha \colon R \to R$ is the twisting map of a non-unital, hom-associative ring R, and extend the map homogeneously to $R[x; \sigma, \delta]$. Assume further that α commutes with δ and σ , and that σ is an endomorphism and δ a σ -derivation. Then $R[x; \sigma, \delta]$ is hom-associative. #### Sufficient conditions for hom-associativity **Proposition** ([BRS18). Assume $\alpha \colon R \to R$ is the twisting map of a non-unital, hom-associative ring R, and extend the map homogeneously to $R[x; \sigma, \delta]$. Assume further that α commutes with δ and σ , and that σ is an endomorphism and δ a σ -derivation. Then $R[x; \sigma, \delta]$ is hom-associative. **Proposition** ([BRS18]). Let $R[x; \sigma, \delta]$ be an associative, unital Ore extension of an associative, unital ring R, and $\alpha \colon R \to R$ a ring endomorphism that commutes with δ and σ , and that σ is an endomorphism and δ a σ -derivation. #### Sufficient conditions for hom-associativity **Proposition** ([BRS18). Assume $\alpha \colon R \to R$ is the twisting map of a non-unital, hom-associative ring R, and extend the map homogeneously to $R[x; \sigma, \delta]$. Assume further that α commutes with δ and σ , and that σ is an endomorphism and δ a σ -derivation. Then $R[x; \sigma, \delta]$ is hom-associative. **Proposition** ([BRS18]). Let $R[x; \sigma, \delta]$ be an associative, unital Ore extension of an associative, unital ring R, and $\alpha \colon R \to R$ a ring endomorphism that commutes with δ and σ , and that σ is an endomorphism and δ a σ -derivation. Then $(R[x; \sigma, \delta], *, \alpha)$ is a weakly unital, hom-associative Ore extension with α extended homogeneously to a ring endomorphism on $R[x; \sigma, \delta]$. **Example** (Hom-associative quantum planes [BRS18]). The quantum planes $Q_q(K) := K\langle x,y\rangle/\langle x\cdot y-qy\cdot x\rangle$ can be presented as $K[y][x;\sigma,0]$ where K is a field of characteristic zero and σ the unital K-algebra automorphism of K[y] such that $\sigma(y)=qy$ and $q\in K^\times$ (multiplicative group of nonzero elements). **Example** (Hom-associative quantum planes [BRS18]). The quantum planes $Q_q(K) := K\langle x,y\rangle/\langle x\cdot y-qy\cdot x\rangle$ can be presented as $K[y][x;\sigma,0]$ where K is a field of characteristic zero and σ the unital K-algebra automorphism of K[y] such that $\sigma(y) = qy$ and $q \in K^{\times}$ (multiplicative group of nonzero elements). An algebra endomorphism α_k on K[y] commutes with σ (and 0) iff $\alpha_k(y) = ky$, $k \in K^{\times}$, and $\alpha_k(1_K) = 1_K$. **Example** (Hom-associative quantum planes [BRS18]). The quantum planes $Q_q(K) := K\langle x,y \rangle / \langle x \cdot y - qy \cdot x \rangle$ can be presented as $K[y][x;\sigma,0]$ where K is a field of characteristic zero and σ the unital K-algebra automorphism of K[y] such that $\sigma(y) = qy$ and $q \in K^{\times}$ (multiplicative group of nonzero elements). An algebra endomorphism α_k on K[y] commutes with σ (and 0) iff $\alpha_k(y) = ky, \ k \in K^{\times}$, and $\alpha_k(1_K) = 1_K$. This is a k-family $\{Q_q^k(K)\}_{k\in K}$ of weakly-unital, hom-associative Ore extensions $Q_q^k(K):=(Q_q(K),*,\alpha_k)$ with weak unit 1_K , where for instance $x*(y*y)-(x*y)*y=(k-1_K)k^3q^2y^2x$. **Example** (Hom-associative quantum planes [BRS18]). The quantum planes $Q_q(K) := K\langle x,y \rangle/\langle x\cdot y - qy\cdot x \rangle$ can be presented as $K[y][x;\sigma,0]$ where K is a field of characteristic zero and σ the unital K-algebra automorphism of K[y] such that $\sigma(y) = qy$ and $q \in K^\times$ (multiplicative group of nonzero elements). An algebra endomorphism α_k on K[y] commutes with σ (and 0) iff $\alpha_k(y) = ky, \ k \in K^\times$, and $\alpha_k(1_K) = 1_K$. This is a k-family $\{Q_q^k(K)\}_{k\in K}$ of weakly-unital, hom-associative Ore extensions $Q_q^k(K):=(Q_q(K),*,\alpha_k)$ with weak unit 1_K , where for instance $x*(y*y)-(x*y)*y=(k-1_K)k^3q^2y^2x$. We call these hom-associative quantum planes, the commutation relation $x \cdot y = qy \cdot x$ becoming x * y = kqy * x, including the associative quantum planes in $k = 1_K$. **Example** (Hom-associative Weyl algebras [BRS18]). Consider the first Weyl algebras $W(K) := K\langle x,y\rangle/\langle x\cdot y-y\cdot x-1_K\rangle$ as $K[y][x;\mathrm{id}_{K[y]},\delta]$, where K is a field of characteristic zero, and $\delta=\frac{\mathrm{d}}{\mathrm{d}y}$. An algebra endomorphism α_k on K[y] commutes with δ (and $\mathrm{id}_{K[y]}$) iff $\alpha_k(y)=y+k,\ k\in K$, and $\alpha_k(1_K)=1_K$. **Example** (Hom-associative Weyl algebras [BRS18]). Consider the first Weyl algebras $W(K) := K\langle x,y \rangle / \langle x \cdot y - y \cdot x - 1_K \rangle$ as $K[y][x; \mathrm{id}_{K[y]}, \delta]$, where K is a field of characteristic zero, and $\delta = \frac{\mathrm{d}}{\mathrm{d}y}$. An algebra endomorphism α_k on K[y] commutes with δ (and $\mathrm{id}_{K[y]}$) iff $\alpha_k(y) = y + k, \ k \in K$, and $\alpha_k(1_K) = 1_K$. This is a k-family $\{W^k(K)\}_{k\in K}$ of weakly-unital, hom-associative Ore extensions $W^k(K) := (W(K), *, \alpha_k)$ with weak unit 1_K , where for instance (y*x)*y-y*(x*y)=k. **Example** (Hom-associative Weyl algebras [BRS18]). Consider the first Weyl algebras $W(K) := K\langle x,y \rangle / \langle x \cdot y - y \cdot x - 1_K \rangle$ as $K[y][x; \mathrm{id}_{K[y]}, \delta]$, where K is a field of characteristic zero, and $\delta = \frac{\mathrm{d}}{\mathrm{d}y}$. An algebra endomorphism α_k on K[y] commutes with δ (and $\mathrm{id}_{K[y]}$) iff $\alpha_k(y) = y + k, \ k \in K$, and $\alpha_k(1_K) = 1_K$. This is a k-family $\{W^k(K)\}_{k\in K}$ of weakly-unital, hom-associative Ore extensions $W^k(K) := (W(K), *, \alpha_k)$ with weak unit 1_K , where for instance (y*x)*y-y*(x*y)=k. We call these hom-associative Weyl algebras, the commutation relation $x \cdot y - y \cdot x = 1_K$ becoming $x * y - y * x = 1_K$. **Example** (Hom-associative Weyl algebras [BRS18]). Consider the first Weyl algebras $W(K) := K\langle x, y \rangle / \langle x \cdot y - y \cdot x - 1_K \rangle$ as $K[y][x; \mathrm{id}_{K[y]}, \delta]$, where K is a field of characteristic zero, and $\delta = \frac{\mathrm{d}}{\mathrm{d}u}$. An algebra endomorphism α_k on K[y] commutes with δ (and $\mathrm{id}_{K[y]}$) iff $\alpha_k(y) = y + k$, $k \in K$, and $\alpha_k(1_K) = 1_K$. This is a k-family $\{W^k(K)\}_{k\in K}$ of weakly-unital, hom-associative Ore extensions $W^k(K) := (W(K), *, \alpha_k)$ with weak unit 1_K , where for instance (y * x) * y - y * (x * y) = k. We call these hom-associative Weyl algebras, the commutation relation $x \cdot y - y \cdot x = 1_K$ becoming $x * y - y * x = 1_K$. **Proposition** ([Bäc18]). The following hold in $W^k(K)$: $[x, p(y)]_{x} = p'(y+k)$, for any polynomial p(y) in y. $[q(x), y]_x = q'(x)$, for any polynomial q(x) in x. **Example** (Hom-associative Weyl algebras [BRS18]). Consider the first Weyl algebras $W(K) := K\langle x,y \rangle / \langle x \cdot y - y \cdot x - 1_K \rangle$ as $K[y][x; \mathrm{id}_{K[y]}, \delta]$, where K is a field of characteristic zero, and $\delta = \frac{\mathrm{d}}{\mathrm{d}y}$. An algebra endomorphism α_k on K[y] commutes with δ (and $\mathrm{id}_{K[y]}$) iff $\alpha_k(y) = y + k, \ k \in K$, and $\alpha_k(1_K) = 1_K$. This is a k-family $\{W^k(K)\}_{k\in K}$ of weakly-unital, hom-associative Ore extensions $W^k(K) := (W(K), *, \alpha_k)$ with weak unit 1_K , where for instance (y*x)*y-y*(x*y)=k. We call these hom-associative Weyl algebras, the commutation relation $x \cdot y - y \cdot x = 1_K$ becoming $x * y - y * x = 1_K$. **Proposition** ([Bäc18]). The following hold in $W^k(K)$: $[x, p(y)]_* = p'(y+k)$, for any polynomial p(y) in y. $[q(x), y]_* = q'(x)$, for any polynomial q(x) in x. **Proposition** ([Bäc18]). $W^k(K)$ are central simple K-algebras. [[]Bäc18] P. Bäck. "Deformed Weyl algebras". Working paper. **Definition** (One-parameter formal hom-associative deformation). A one-parameter formal hom-associative deformation of a hom-associative R-algebra (M, μ_0, α_0) is a hom-associative R[[t]]-algebra $(M[[t]], \mu_t, \alpha_t)$, **Definition** (One-parameter formal hom-associative deformation). A one-parameter formal hom-associative deformation of a hom-associative R-algebra (M, μ_0, α_0) is a hom-associative R[[t]]-algebra $(M[[t]], \mu_t, \alpha_t)$, where $$\mu_t := \sum_{i=0}^{\infty} \mu_i t^i, \quad \alpha_t := \sum_{i=0}^{\infty} \alpha_j t^j.$$ **Definition** (One-parameter formal hom-associative deformation). A one-parameter formal hom-associative deformation of a hom-associative R-algebra (M, μ_0, α_0) is a hom-associative R[[t]]-algebra $(M[[t]], \mu_t, \alpha_t)$, where $$\mu_t := \sum_{i=0}^{\infty} \mu_i t^i, \quad \alpha_t := \sum_{i=0}^{\infty} \alpha_j t^j.$$ **Proposition** ([Bäc18]). $Q_q^k(K)$ with t = k - 1 and $W^k(K)$ with t = k are one-parameter formal hom-associative deformations of their associative counterparts; $\mu_t = \alpha_t \circ \mu_0$. **Definition** (One-parameter formal hom-associative deformation). A one-parameter formal hom-associative deformation of a hom-associative R-algebra (M, μ_0, α_0) is a hom-associative R[[t]]-algebra $(M[[t]], \mu_t, \alpha_t)$, where $$\mu_t := \sum_{i=0}^{\infty} \mu_i t^i, \quad \alpha_t := \sum_{i=0}^{\infty} \alpha_j t^j.$$ **Proposition** ([Bäc18]). $Q_q^k(K)$ with t = k - 1 and $W^k(K)$ with t = k are one-parameter formal hom-associative deformations of their associative counterparts; $\mu_t = \alpha_t \circ \mu_0$. In $$W^t(K)$$: $\alpha_t(y^m x^n) = (y+t)^m x^n = \sum_{j=0}^m {m \choose j} y^{m-j} x^n t^j$. **Definition** (One-parameter formal hom-associative deformation). A one-parameter formal hom-associative deformation of a hom-associative R-algebra (M, μ_0, α_0) is a hom-associative R[[t]]-algebra $(M[[t]], \mu_t, \alpha_t)$, where $$\mu_t := \sum_{i=0}^{\infty} \mu_i t^i, \quad \alpha_t := \sum_{i=0}^{\infty} \alpha_j t^j.$$ **Proposition** ([Bäc18]). $Q_q^k(K)$ with t = k - 1 and $W^k(K)$ with t = k are one-parameter formal hom-associative deformations of their associative counterparts; $\mu_t = \alpha_t \circ \mu_0$. In $$W^t(K)$$: $\alpha_t(y^m x^n) = (y+t)^m x^n = \sum_{j=0}^m {m \choose j} y^{m-j} x^n t^j$. **Note.** The Weyl algebras are associatively formally rigid. A family \mathcal{F} of subsets of a set S satisfies the ascending chain condition if there is no properly ascending infinite chain $S_1 \subset S_2 \subset \ldots$ of subsets from \mathcal{F} . A family \mathcal{F} of subsets of a set S satisfies the ascending chain condition if there is no properly ascending infinite chain $S_1 \subset S_2 \subset \ldots$ of subsets from \mathcal{F} . Furthermore is an element in \mathcal{F} called a maximal element of \mathcal{F} provided there is no subset of \mathcal{F} that properly contains that element. A family \mathcal{F} of subsets of a set S satisfies the ascending chain condition if there is no properly ascending infinite chain $S_1 \subset S_2 \subset \ldots$ of subsets from \mathcal{F} . Furthermore is an element in \mathcal{F} called a maximal element of \mathcal{F} provided there is no subset of \mathcal{F} that properly contains that element. **Proposition** (The hom-noetherian conditions [BR18]). Let R be a non-unital, hom-associative ring. Then the following conditions are equivalent: [[]BR18] P. Bäck and J. Richter. "A non-associative and a hom-associative Hilbert's basis theorem". *Preprint*, arxiv:1804.11304. A family \mathcal{F} of subsets of a set S satisfies the ascending chain condition if there is no properly ascending infinite chain $S_1 \subset S_2 \subset \ldots$ of subsets from \mathcal{F} . Furthermore is an element in \mathcal{F} called a maximal element of \mathcal{F} provided there is no subset of \mathcal{F} that properly contains that element. **Proposition** (The hom-noetherian conditions [BR18]). Let R be a non-unital, hom-associative ring. Then the following conditions are equivalent: (N1) R satisfies the ascending chain condition on its right (left) hom-ideals. [[]BR18] P. Bäck and J. Richter. "A non-associative and a hom-associative Hilbert's basis theorem". *Preprint*, arxiv:1804.11304. ## Hom-noetherian Ore extensions A family \mathcal{F} of subsets of a set S satisfies the ascending chain condition if there is no properly ascending infinite chain $S_1 \subset S_2 \subset \ldots$ of subsets from \mathcal{F} . Furthermore is an element in \mathcal{F} called a maximal element of \mathcal{F} provided there is no subset of \mathcal{F} that properly contains that element. **Proposition** (The hom-noetherian conditions [BR18]). Let R be a non-unital, hom-associative ring. Then the following conditions are equivalent: - (N1) R satisfies the ascending chain condition on its right (left) hom-ideals. - (N2) Any nonempty family of right (left) hom-ideals of R has a maximal element. [[]BR18] P. Bäck and J. Richter. "A non-associative and a hom-associative Hilbert's basis theorem". *Preprint*, arxiv:1804.11304. ## Hom-noetherian Ore extensions A family \mathcal{F} of subsets of a set S satisfies the ascending chain condition if there is no properly ascending infinite chain $S_1 \subset S_2 \subset \ldots$ of subsets from \mathcal{F} . Furthermore is an element in \mathcal{F} called a maximal element of \mathcal{F} provided there is no subset of \mathcal{F} that properly contains that element. **Proposition** (The hom-noetherian conditions [BR18]). Let R be a non-unital, hom-associative ring. Then the following conditions are equivalent: - (N1) R satisfies the ascending chain condition on its right (left) hom-ideals. - (N2) Any nonempty family of right (left) hom-ideals of R has a maximal element. - (N3) Any right (left) hom-ideal of R is finitely generated. [[]BR18] P. Bäck and J. Richter. "A non-associative and a hom-associative Hilbert's basis theorem". *Preprint*, arxiv:1804.11304. **Definition** (Hom-noetherian ring [BR18]). A non-unital, hom-associative ring R is called *right (left) hom-noetherian* if it satisfies the three equivalent conditions above on its right (left) hom-ideals. **Theorem** (Hilbert's basis theorem for hom-associative rings [BR18]). Let $\alpha \colon R \to R$ be the twisting map of a unital, hom-associative ring R, and extend the map homogeneously to $R[x; \sigma, \delta]$. **Theorem** (Hilbert's basis theorem for hom-associative rings [BR18]). Let $\alpha \colon R \to R$ be the twisting map of a unital, hom-associative ring R, and extend the map homogeneously to $R[x;\sigma,\delta]$. Assume further that α commutes with δ and σ , and that σ is an automorphism and δ a σ -derivation on R. If R is right (left) hom-noetherian, then so is $R[x;\sigma,\delta]$. **Theorem** (Hilbert's basis theorem for hom-associative rings [BR18]). Let $\alpha \colon R \to R$ be the twisting map of a unital, hom-associative ring R, and extend the map homogeneously to $R[x;\sigma,\delta]$. Assume further that α commutes with δ and σ , and that σ is an automorphism and δ a σ -derivation on R. If R is right (left) hom-noetherian, then so is $R[x;\sigma,\delta]$. **Corollary** (Hilbert's basis theorem for non-associative rings [BR18]). Let R be a unital, non-associative ring, σ an automorphism and δ a σ -derivation on R. If R is right (left) noetherian, then so is $R[x; \sigma, \delta]$. **Example** (Octonionic Weyl algebra [BR18]). Denote by \mathbb{O} the octonions; $\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O}$. We define the *octonionic Weyl algebra* as $\mathbb{O}[y][x; \mathrm{id}_{\mathbb{O}[y]}, \delta]$, where $\delta := \frac{\mathrm{d}}{\mathrm{d}y}$; hence $x \cdot y - y \cdot x = 1_{\mathbb{O}}$. **Example** (Octonionic Weyl algebra [BR18]). Denote by \mathbb{O} the octonions; $\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O}$. We define the *octonionic Weyl algebra* as $\mathbb{O}[y][x; \mathrm{id}_{\mathbb{O}[y]}, \delta]$, where $\delta := \frac{\mathrm{d}}{\mathrm{d}y}$; hence $x \cdot y - y \cdot x = 1_{\mathbb{O}}$. **Proposition** ([BR18]). The octonionic Weyl algebra is noetherian. # Thank you!