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Introduction

Hom-associative algebras – algebras with the associativity
twisted by a homomorphism – arose with the introduction of
hom-Lie algebras by Hartwig, Larsson and Silvestrov
HLS03J.T. Hartwig, D. Larsson, and S.D. Silvestrov.
“Deformations of Lie algebras using σ-derivations”. Preprints in
Math. Sc., 2003:32, Lund University (2003)..

Non-commutative polynomial rings – or Ore extensions – were
introduced 70 years earlier by Ø. Ore Ore33O. Ore. “Theory of
Non-Commutative Polynomials”. Ann. of Math. 34(3) (1933).,
generalized to non-associative such by Nystedt, Öinert and
Richter NÖR18P. Nystedt, J. Öinert, and J. Richter.
“Non-associative Ore extensions”. Isr. J. Math. 224(1) (2018).
.

The former have a known non-associative structure: what about
hom-associative Ore extensions?
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Preliminaries: hom-associative algebras

Definition (Hom-associative algebra). A hom-associative
algebra over an associative, commutative, and unital ring R, is a
triple (M, ·, α) consisting of an R-module M , a binary operation
· : M ×M → M linear in both arguments, and a linear map
α : M → M satisfying, for all a, b, c ∈ M ,

α(a) · (b · c) = (a · b) · α(c).

Definition (Hom-associative ring). A hom-associative ring is a
hom-associative algebra over the ring of integers.

Definition (Hom-ideal). A right (left) hom-ideal of a
hom-associative algebra is a right (left) algebra ideal I such
that α(I) ⊆ I. If I is both a left and a right hom-ideal, we
simply call it a hom-ideal.
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Definition (Weakly unital algebra). Let (M, ·, α) be a
hom-associative algebra. If for all a ∈ M , e · a = a · e = α(a) for
some e ∈ M , we say that (M, ·, α) is weakly unital with weak
unit e.

Proposition (Weak unitalization BRS18P. Bäck, J. Richter,
and S. Silvestrov. “Hom-associative Ore extensions and weak
unitalizations”. Int. Electron. J. Algebra 24 (2018).). Any
multiplicative hom-associative algebra can be embedded in a
multiplicative, weakly unital hom-associative algebra.

Proposition (The Yau twist Yau09D. Yau. “Hom-Algebras
and Homology”. J. Lie Theory 19.2 (2009).). Let A be a unital,
associative algebra, α an algebra endomorphism on A and define
∗ : A×A → A by a ∗ b := α(a · b) for all a, b ∈ A. Then (A, ∗, α)
is a weakly unital hom-associative algebra with weak unit 1A.
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Preliminaries: non-associative Ore extensions

Definition (Left R-additivity). If R is a non-associative,
non-unital ring, we say that a map β : R → R is left R-additive
if for all r, s, t ∈ R, r · β(s+ t) = r ·

(
β(s) + β(t)

)
.

Given a non-associative, non-unital ring R with left R-additive
maps δ : R → R and σ : R → R, by a non-associative, non-unital
Ore extension of R, R[x;σ, δ], we mean

{∑
i∈N aix

i
}
, finitely

many ai ∈ R non-zero, endowed with the addition∑
i∈N

aix
i +

∑
i∈N

bix
i :=

∑
i∈N

(ai + bi)x
i, ai, bi ∈ R,

two polynomials being equal iff their coefficients are, ∀a, b ∈ R,

axm · bxn :=
∑
i∈N

(
a · πm

i (b)
)
xi+n. (1)

Here πm
i is the sum of all

(
m
i

)
compositions of i copies of σ and

m− i copies of δ. For example π0
0 = idR and π2

1 = σ ◦ δ + δ ◦ σ.
Imposing distributivity of the multiplication over addition
makes R[x;σ, δ] a ring.
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For instance,

ax0 · bx0 =
∑
i∈N

(
a · π0

i (b)
)
xi+0 = (a · b)x0, so R ∼= Rx0,

a · bx =
∑
i∈N

(
a · π0

i (b)
)
xi+1 = (a · b)x,

ax · b =
∑
i∈N

(
a · π1

i (b)
)
xi+0 =

(
a · σ(b)

)
x+ a · δ(b).

Remark. If R contains a unit, we write x for the formal sum∑
i∈N aix

i with a1 = 1 and ai = 0 when i 6= 1. It does not
necessarily make sense to think of x as an element of the
non-associative Ore extension if R is not unital.

Definition (σ-derivation). Let R be a non-unital,
non-associative ring where σ is an endomorphism and δ an
additive map on R. Then δ is called a σ-derivation if
δ(a · b) = σ(a) · δ(b) + δ(a) · b holds for all a, b ∈ R. If σ = idR, δ
is a derivation.
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Necessary conditions for hom-associativity

Definition (Homogeneous map). Let R[x;σ, δ] be a
non-associative, non-unital Ore extension of a non-associative,
non-unital ring R. If α : R → R is any (additive) map, we may
extend it homogeneously to R[x;σ, δ] by α(axm) := α(a)xm

(imposing additivity).

Proposition ([BRS18]). Let R[x;σ, δ] be a hom-associative,
non-unital Ore extension of a hom-associative, non-unital ring
R, with the additive map α : R → R extended homogeneously
to R[x;σ, δ]. Then, for all a, b, c ∈ R,

(a · b) · δ(α(c)) = (a · b) · α(δ(c)), (2)
(a · b) · σ(α(c)) = (a · b) · α(σ(c)), (3)
α(a) · σ(b · c) = α(a) ·

(
σ(b) · σ(c)

)
, (4)

α(a) · δ(b · c) = α(a) · (σ(b) · δ(c) + δ(b) · c). (5)
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Sufficient conditions for hom-associativity

Proposition ([BRS18). Assume α : R → R is the twisting map
of a non-unital, hom-associative ring R, and extend the map
homogeneously to R[x;σ, δ]. Assume further that α commutes
with δ and σ, and that σ is an endomorphism and δ a
σ-derivation. Then R[x;σ, δ] is hom-associative.

Proposition ([BRS18]). Let R[x;σ, δ] be an associative, unital
Ore extension of an associative, unital ring R, and α : R → R a
ring endomorphism that commutes with δ and σ, and that σ is
an endomorphism and δ a σ-derivation. Then

(
R[x;σ, δ], ∗, α

)
is

a weakly unital, hom-associative Ore extension with α extended
homogeneously to a ring endomorphism on R[x;σ, δ].
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Examples

Example (Hom-associative quantum planes [BRS18]). The
quantum planes Qq(K) := K〈x, y〉/〈x · y − qy · x〉 can be
presented as K[y][x;σ, 0] where K is a field of characteristic
zero and σ the unital K-algebra automorphism of K[y] such
that σ(y) = qy and q ∈ K× (multiplicative group of nonzero
elements). An algebra endomorphism αk on K[y] commutes
with σ (and 0) iff αk(y) = ky, k ∈ K×, and αk(1K) = 1K .

This is a k-family {Qk
q (K)}k∈K of weakly-unital,

hom-associative Ore extensions Qk
q (K) := (Qq(K), ∗, αk) with

weak unit 1K , where for instance
x ∗ (y ∗ y)− (x ∗ y) ∗ y = (k − 1K)k3q2y2x.

We call these hom-associative quantum planes, the
commutation relation x · y = qy · x becoming x ∗ y = kqy ∗ x,
including the associative quantum planes in k = 1K .
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Example (Hom-associative Weyl algebras [BRS18]). Consider
the first Weyl algebras W (K) := K〈x, y〉/〈x · y − y · x− 1K〉 as
K[y][x; idK[y], δ], where K is a field of characteristic zero, and
δ = d

dy . An algebra endomorphism αk on K[y] commutes with δ
(and idK[y]) iff αk(y) = y + k, k ∈ K, and αk(1K) = 1K .

This is a k-family {W k(K)}k∈K of weakly-unital,
hom-associative Ore extensions W k(K) := (W (K), ∗, αk) with
weak unit 1K , where for instance (y ∗ x) ∗ y − y ∗ (x ∗ y) = k.

We call these hom-associative Weyl algebras, the commutation
relation x · y − y · x = 1K becoming x ∗ y − y ∗ x = 1K .

Proposition (Bäc18P. Bäck. “Deformed Weyl algebras”.
Working paper.). The following hold in W k(K):[
x, p(y)

]
∗ = p′(y + k), for any polynomial p(y) in y.[

q(x), y
]
∗ = q′(x), for any polynomial q(x) in x.

Proposition ([Bäc18]). W k(K) are central simple K-algebras.
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One-parameter formal deformations

Definition (One-parameter formal hom-associative
deformation). A one-parameter formal hom-associative
deformation of a hom-associative R-algebra (M,µ0, α0) is a
hom-associative R[[t]]-algebra (M [[t]], µt, αt),where

µt :=
∞∑
i=0

µit
i, αt :=

∞∑
i=0

αjt
j .

Proposition ([Bäc18]). Qk
q (K) with t = k − 1 and W k(K)

with t = k are one-parameter formal hom-associative
deformations of their associative counterparts; µt = αt ◦ µ0.

In W t(K) : αt(y
mxn) = (y + t)mxn =

∑m
j=0

(
m
j

)
ym−jxntj .

Note. The Weyl algebras are associatively formally rigid.
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deformation of a hom-associative R-algebra (M,µ0, α0) is a
hom-associative R[[t]]-algebra (M [[t]], µt, αt),where

µt :=

∞∑
i=0

µit
i, αt :=

∞∑
i=0

αjt
j .

Proposition ([Bäc18]). Qk
q (K) with t = k − 1 and W k(K)

with t = k are one-parameter formal hom-associative
deformations of their associative counterparts; µt = αt ◦ µ0.

In W t(K) : αt(y
mxn) = (y + t)mxn =

∑m
j=0

(
m
j

)
ym−jxntj .

Note. The Weyl algebras are associatively formally rigid.



Hom-noetherian Ore extensions

A family F of subsets of a set S satisfies the ascending chain
condition if there is no properly ascending infinite chain
S1 ⊂ S2 ⊂ . . . of subsets from F . Furthermore is an element in
F called a maximal element of F provided there is no subset of
F that properly contains that element.

Proposition (The hom-noetherian conditions BR18P. Bäck
and J. Richter. “A non-associative and a hom-associative
Hilbert’s basis theorem”. Preprint, arxiv:1804.11304.
). Let R be a non-unital, hom-associative ring. Then the
following conditions are equivalent:

(N1) R satisfies the ascending chain condition on its right (left)
hom-ideals.

(N2) Any nonempty family of right (left) hom-ideals of R has a
maximal element.

(N3) Any right (left) hom-ideal of R is finitely generated.
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Definition (Hom-noetherian ring [BR18]). A non-unital,
hom-associative ring R is called right (left) hom-noetherian if it
satisfies the three equivalent conditions above on its right (left)
hom-ideals.

If R satisfies the conditions on both its right and its
left hom-ideals, it is called hom-noetherian.

Theorem (Hilbert’s basis theorem for hom-associative rings
[BR18]). Let α : R → R be the twisting map of a unital,
hom-associative ring R, and extend the map homogeneously to
R[x;σ, δ]. Assume further that α commutes with δ and σ, and
that σ is an automorphism and δ a σ-derivation on R. If R is
right (left) hom-noetherian, then so is R[x;σ, δ].

Corollary (Hilbert’s basis theorem for non-associative rings
[BR18]). Let R be a unital, non-associative ring, σ an
automorphism and δ a σ-derivation on R. If R is right (left)
noetherian, then so is R[x;σ, δ].
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Example (Octonionic Weyl algebra [BR18]). Denote by O the
octonions; R ⊂ C ⊂ H ⊂ O. We define the octonionic Weyl
algebra as O[y][x; idO[y], δ], where δ := d

dy ; hence
x · y − y · x = 1O.

Proposition ([BR18]). The octonionic Weyl algebra is
noetherian.
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