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Non-commutative polynomial rings — or Ore extensions — were
introduced 70 years earlier by (). Ore [Ore33], generalized to
non-associative such by Nystedt, Oinert and Richter [NOR18].
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triple (M, -, ) consisting of an R-module M, a binary operation
-+ M x M — M linear in both arguments, and a linear map

a: M — M satisfying, for all a,b,c € M,

afa)-(b-c)=(a-b)-afc).

Definition (Hom-associative ring). A hom-associative ring is a
hom-associative algebra over the ring of integers.

Definition (Hom-ideal). A right (left) hom-ideal of a
hom-associative algebra is a right (left) algebra ideal I such
that a(I) C I. If I is both a left and a right hom-ideal, we
simply call it a hom-ideal.
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hom-associative algebra. If for alla € M, e-a=a-e = a(a) for
some e € M, we say that (M, -, «) is weakly unital with weak
unit e.

Proposition (Weak unitalization [BRS18]). Any multiplicative
hom-associative algebra can be embedded in a multiplicative,
weakly unital hom-associative algebra.

Proposition (The Yau twist [Yau09]). Let A be a unital,
associative algebra, a an algebra endomorphism on A and define
x: AXA— Aby axb:=a(a-b) for all a,b € A. Then (A, %, a)
is a weakly unital hom-associative algebra with weak unit 14.
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non-unital ring, we say that a map 8: R — R is left R-additive
if for all 7,s,t € R, 7 B(s+t) =7 (B(s) + B(t)).

Given a non-associative, non-unital ring R with left R-additive
maps 0: R — R and o: R — R, by a non-associative, non-unital
Ore extension of R, R[x;0,d], we mean {ZieN aixl} , finitely
many a; € R non-zero, endowed with the addition
Z a;zt + Z bz = Z(ai + bi)zi, a;,b; € R,
i€N i€N i€N
two polynomials being equal iff their coefficients are, Va,b € R,
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Here 7} is the sum of all (TZ”) compositions of i copies of ¢ and
m — i copies of J. For example 7r8 =idgand 72 =cod+do0.
Imposing distributivity of the multiplication over addition
makes R[z;o0,d] a ring.
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Remark. If R contains a unit, we write x for the formal sum
Y ieN a;x’ with a; = 1 and a; = 0 when i # 1. It does not
necessarily make sense to think of x as an element of the
non-associative Ore extension if R is not unital.

Definition (o-derivation). Let R be a non-unital,
non-associative ring where o is an endomorphism and § an
additive map on R. Then ¢ is called a o-derivation if

d(a-b) =0c(a)-0(b) +d(a)- b holds for all a,b € R. If 0 =idpg, ¢
is a derivation.
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Proposition ([BRS18). Assume a: R — R is the twisting map
of a non-unital, hom-associative ring R, and extend the map
homogeneously to R[x;o,d]. Assume further that o commutes
with § and o, and that ¢ is an endomorphism and § a
o-derivation. Then R[z;0,d] is hom-associative.

Proposition ([BRS18]). Let R|x;0,d] be an associative, unital

Ore extension of an associative, unital ring R, and a: R — R a

ring endomorphism that commutes with ¢ and o, and that o is

an endomorphism and ¢ a o-derivation. Then (R[x; 0, 0], *, a) is
a weakly unital, hom-associative Ore extension with a extended
homogeneously to a ring endomorphism on R[z;0,d].
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This is a k-family {Q¥(K)}rex of weakly-unital,
hom-associative Ore extensions Q’;(K) = (Qq(K), *, a,) with
weak unit 1g, where for instance

zx(yxy) — (@ry)xy = (k- 1)k ¢*y .

We call these hom-associative quantum planes, the
commutation relation x - y = qy - x becoming x x y = kqy * x,
including the associative quantum planes in k£ = 1.
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Proposition ([Bicl8]). The following hold in W*(K):
[x,p(y)] . =P (y + k), for any polynomial p(y) in y.
lq(z),y], = ¢'(z), for any polynomial ¢(z) in x.

Proposition ([Bicl8]). W¥(K) are central simple K-algebras.
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Definition (One-parameter formal hom-associative
deformation). A one-parameter formal hom-associative
deformation of a hom-associative R-algebra (M, ug, ag) is a
hom-associative R|[t]]-algebra (M[[t]], ¢, ou),where

o0 o0
Lt = Zuitl, oy = Z a;tt.
i=0 i=0

Proposition ([Béicl8]). QF(K) with ¢ = k — 1 and W*(K)
with ¢ = k are one-parameter formal hom-associative
deformations of their associative counterparts; p; = oy o pp.

In WHEK) : oy (y™a™) = (y +t)"a" = 371, (7)ym_jx"tj.

Note. The Weyl algebras are associatively formally rigid.
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Proposition (The hom-noetherian conditions [BR18]). Let R
be a non-unital, hom-associative ring. Then the following
conditions are equivalent:

(N1) R satisfies the ascending chain condition on its right (left)
hom-ideals.
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Proposition (The hom-noetherian conditions [BR18]). Let R
be a non-unital, hom-associative ring. Then the following
conditions are equivalent:

(N1) R satisfies the ascending chain condition on its right (left)
hom-ideals.

(N2) Any nonempty family of right (left) hom-ideals of R has a
maximal element.
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A family F of subsets of a set S satisfies the ascending chain
condition if there is no properly ascending infinite chain

S1 C Sy C ... of subsets from F. Furthermore is an element in
F called a mazimal element of F provided there is no subset of
F that properly contains that element.

Proposition (The hom-noetherian conditions [BR18]). Let R
be a non-unital, hom-associative ring. Then the following
conditions are equivalent:

(N1) R satisfies the ascending chain condition on its right (left)
hom-ideals.

(N2) Any nonempty family of right (left) hom-ideals of R has a
maximal element.

(N3) Any right (left) hom-ideal of R is finitely generated.

[BR18] P. Béck and J. Richter. “A non-associative and a
hom-associative Hilbert’s basis theorem”. Preprint, arxiv:1804.11304.
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satisfies the three equivalent conditions above on its right (left)
hom-ideals. If R satisfies the conditions on both its right and its
left hom-ideals, it is called hom-noetherian.

Theorem (Hilbert’s basis theorem for hom-associative rings
[BR18]). Let ac: R — R be the twisting map of a unital,
hom-associative ring R, and extend the map homogeneously to
R[z;0,6]. Assume further that o commutes with ¢ and o, and
that ¢ is an automorphism and ¢ a o-derivation on R. If R is
right (left) hom-noetherian, then so is R[z; 0, d].

Corollary (Hilbert’s basis theorem for non-associative rings
[BR18]). Let R be a unital, non-associative ring, o an
automorphism and ¢ a o-derivation on R. If R is right (left)
noetherian, then so is R[x;0,4d].
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Example (Octonionic Weyl algebra [BR18]). Denote by O the
octonions; R C C C H C 0. We define the octonionic Weyl
algebra as Oly|[z;1dgyy,, 6], where ¢ := d%; hence
r-y—y-x=Ilg.

Proposition ([BR18]). The octonionic Weyl algebra is
noetherian.
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