Undeformed commutators in q-deformed Heisenberg algebras

Rafael Cantuba

De La Salle University, Manila
Definition

Let \mathbb{F} be a field, and let $q \in \mathbb{F}$. The q-deformed Heisenberg algebra $\mathcal{H}(q)$ is the unital associative algebra over \mathbb{F} that has a presentation by generators A, B and relation

$$AB - qBA = I,$$

where I is the multiplicative identity.
Let \mathbb{F} be a field, and let $q \in \mathbb{F}$. The \textit{q-deformed Heisenberg algebra} $\mathcal{H}(q)$ is the unital associative algebra over \mathbb{F} that has a presentation by generators A, B and relation

$$AB - qBA = I,$$

where I is the multiplicative identity.

A Lie algebra structure is induced by $[U, V] := UV - VU$ for all $U, V \in \mathcal{H}(q)$.

Goal: Study the Lie subalgebra $L(q)$ of $\mathcal{H}(q)$ generated by A, B.

Rafael Cantuba

Undeformed commutators in q-deformed Heisenberg algebras
Let \mathbb{F} be a field, and let $q \in \mathbb{F}$. The *q-deformed Heisenberg algebra* $\mathcal{H}(q)$ is the unital associative algebra over \mathbb{F} that has a presentation by generators A, B and relation

$$AB - qBA = I,$$

where I is the multiplicative identity.

A Lie algebra structure is induced by $[U, V] := UV - VU$ for all $U, V \in \mathcal{H}(q)$.

Goal: Study the Lie subalgebra $\mathcal{L}(q)$ of $\mathcal{H}(q)$ generated by A, B.
Some notation:

\[F = \text{arbitrary field,} \]
\[N = \text{set of all nonnegative integers,} \]
\[\mathbb{Z}^+ = \text{set of all positive integers,} \]
Some notation:

\[F = \text{arbitrary field}, \]
\[\mathbb{N} = \text{set of all nonnegative integers}, \]
\[\mathbb{Z}^+ = \text{set of all positive integers}, \]
\[\mathcal{X} = \text{an } n\text{-element set, given a fixed } n \in \mathbb{N}. \]
Some notation:

\[F = \text{arbitrary field}, \]
\[\mathbb{N} = \text{set of all nonnegative integers}, \]
\[\mathbb{Z}^+ = \text{set of all positive integers}, \]
\[X = \text{an } n\text{-element set, given a fixed } n \in \mathbb{N}. \]

Some preliminary notions:

1. Let \(t \in \mathbb{N} \). By a word of length \(t \) on \(X \) we mean a finite sequence of the form

\[X_1 X_2 \cdots X_t \]

where \(X_i \in \mathcal{X} \) for all \(i \in \{1, 2, \ldots, t\} \).
Some preliminary notions:

1. Let $t \in \mathbb{N}$. By a *word of length* t on \mathcal{X} we mean a finite sequence of the form

$$X_1X_2 \cdots X_t$$

where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, \ldots, t\}$.
Some preliminary notions:

1. Let $t \in \mathbb{N}$. By a word of length t on \mathcal{X} we mean a finite sequence of the form $X_1X_2\cdots X_t$ where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, \ldots, t\}$.

2. We denote the word of length 0 by I.

Undeformed commutators in q-deformed Heisenberg algebras
Some preliminary notions:

1. Let $t \in \mathbb{N}$. By a word of length t on \mathcal{X} we mean a finite sequence of the form

$$X_1X_2\cdots X_t$$

where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, \ldots, t\}$.

2. We denote the word of length 0 by I.

3. Given a word W, we denote the length of W by $|W|$.
Some preliminary notions:

1. Let $t \in \mathbb{N}$. By a *word of length* t on \mathcal{X} we mean a finite sequence of the form

 $$X_1 X_2 \cdots X_t$$

 where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, \ldots, t\}$.

2. We denote the word of length 0 by I.

3. Given a word W, we denote the length of W by $|W|$.

4. Given words $X_1 X_2 \cdots X_s$ and $Y_1 Y_2 \cdots Y_t$ on \mathcal{X}, their *concatenation product* is the word

 $$X_1 X_2 \cdots X_s Y_1 Y_2 \cdots Y_t.$$
Preliminaries

Some preliminary notions:

1. Let $t \in \mathbb{N}$. By a \textit{word of length t} on \mathcal{X} we mean a finite sequence of the form

\[X_1 X_2 \cdots X_t \]

where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, \ldots, t\}$.

2. We denote the word of length 0 by I.

3. Given a word W, we denote the length of W by $|W|$.

4. Given words $X_1X_2\cdots X_s$ and $Y_1Y_2\cdots Y_t$ on \mathcal{X}, their \textit{concatenation product} is the word

\[X_1 X_2 \cdots X_s Y_1 Y_2 \cdots Y_t. \]

\[\langle \mathcal{X} \rangle := \text{the set of all words on } \mathcal{X} \]
\(\mathbb{F} \langle X \rangle := \text{the free unital associative algebra on } \mathbb{F} \)
\(\mathbb{F}\langle X \rangle := \text{the free unital associative algebra on } \mathbb{F} \)

(From this point onward: \(\text{algebra} \Leftrightarrow \text{unital associative algebra over } \mathbb{F} \))
\[\mathbb{F}\langle X \rangle := \text{the free unital associative algebra on } \mathbb{F} \]

(From this point onward: algebra ⇔ unital associative algebra over \(\mathbb{F} \))

Recall: some pertinent properties of \(\mathbb{F}\langle X \rangle \):
\[\mathbb{F}\langle X \rangle := \text{the free unital associative algebra on } \mathbb{F} \]

(From this point onward: algebra ⇔ unital associative algebra over \(\mathbb{F} \))

Recall: some pertinent properties of \(\mathbb{F}\langle X \rangle \):

1. A basis for \(\mathbb{F}\langle X \rangle \) is \(\langle X \rangle \).
$\mathbb{F}\langle\mathcal{X}\rangle :=$ the free unital associative algebra on \mathbb{F}

(From this point onward: algebra \iff unital associative algebra over \mathbb{F})

Recall: some pertinent properties of $\mathbb{F}\langle\mathcal{X}\rangle$:

1. A basis for $\mathbb{F}\langle\mathcal{X}\rangle$ is $\langle\mathcal{X}\rangle$.

2. The multiplication operation in $\mathbb{F}\langle\mathcal{X}\rangle$ is completely determined by the concatenation product of words on \mathcal{X}.
\(\mathbb{F}\langle \mathcal{X}\rangle \) := the free unital associative algebra on \(\mathbb{F} \)

(From this point onward: algebra \(\iff \) unital associative algebra over \(\mathbb{F} \))

Recall: some pertinent properties of \(\mathbb{F}\langle \mathcal{X}\rangle \):

1. A basis for \(\mathbb{F}\langle \mathcal{X}\rangle \) is \(\langle \mathcal{X}\rangle \).
2. The multiplication operation in \(\mathbb{F}\langle \mathcal{X}\rangle \) is completely determined by the concatenation product of words on \(\mathcal{X} \).
3. Let \(f_1, f_2, \ldots, f_k \in \mathbb{F}\langle \mathcal{X}\rangle \), and let \(\mathcal{J} \) be the (two-sided) ideal of \(\mathbb{F}\langle \mathcal{X}\rangle \) generated by \(f_1, f_2, \ldots, f_k \). Denote the elements of \(\mathcal{X} \) by \(G_1, G_2, \ldots, G_n \). Then the algebra defined by a presentation having generators \(G_1, G_2, \ldots, G_n \) and relations \(f_1 = 0, f_2 = 0, \ldots, f_k = 0 \) is precisely the quotient algebra \(\mathbb{F}\langle \mathcal{X}\rangle \slash \mathcal{J} \).
Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by $AB - qBA - I$. Then $\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$.
The free Lie algebra on \mathcal{X} (or the set of all Lie polynomials in \mathcal{X}) is the Lie subalgebra $\mathcal{L} := \mathcal{L}_\mathcal{X}$ of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by \mathcal{X}.
1. The free Lie algebra on \mathcal{X} (or the set of all Lie polynomials in \mathcal{X}) is the Lie subalgebra $\mathcal{L} := L_\mathcal{X}$ of $\mathbb{F}\langle \mathcal{X} \rangle$ generated by \mathcal{X}.

2. Analogous to a property of $\mathbb{F}\langle \mathcal{X} \rangle$: Any Lie algebra generated by $|\mathcal{X}|$ elements is a quotient of \mathcal{L}.
The free algebra $\mathbb{F}\langle \mathcal{X} \rangle$ and the free Lie algebra on \mathcal{X}

1. The free Lie algebra on \mathcal{X} (or the set of all Lie polynomials in \mathcal{X}) is the Lie subalgebra $\mathcal{L} := \mathcal{L}_\mathcal{X}$ of $\mathbb{F}\langle \mathcal{X} \rangle$ generated by \mathcal{X}.

2. Analogous to a property of $\mathbb{F}\langle \mathcal{X} \rangle$: Any Lie algebra generated by $|\mathcal{X}|$ elements is a quotient of \mathcal{L}.

3. Given an ideal \mathcal{I} of $\mathbb{F}\langle \mathcal{X} \rangle$, the Lie subalgebra of $\mathbb{F}\langle \mathcal{X} \rangle / \mathcal{I}$ generated by
The free algebra $F\langle X \rangle$ and the free Lie algebra on X

1. The free Lie algebra on X (or the set of all Lie polynomials in X) is the Lie subalgebra $L := L_X$ of $F\langle X \rangle$ generated by X.

2. Analogous to a property of $F\langle X \rangle$: Any Lie algebra generated by $|X|$ elements is a quotient of L.

3. Given an ideal J of $F\langle X \rangle$, the Lie subalgebra of $F\langle X \rangle / J$ generated by X (or the set of all Lie polynomials in X in the algebra $F\langle X \rangle / J$)
The free Lie algebra on \mathcal{X} (or the set of all Lie polynomials in \mathcal{X}) is the Lie subalgebra $\mathcal{L} := \mathcal{L}_\mathcal{X}$ of $\mathbb{F}\langle \mathcal{X} \rangle$ generated by \mathcal{X}.

2 Analogous to a property of $\mathbb{F}\langle \mathcal{X} \rangle$: Any Lie algebra generated by $|\mathcal{X}|$ elements is a quotient of \mathcal{L}.

3 Given an ideal \mathcal{J} of $\mathbb{F}\langle \mathcal{X} \rangle$, the Lie subalgebra of $\mathbb{F}\langle \mathcal{X} \rangle / \mathcal{J}$ generated by \mathcal{X} (or the set of all Lie polynomials in \mathcal{X} in the algebra $\mathbb{F}\langle \mathcal{X} \rangle / \mathcal{J}$) is precisely $\mathcal{L} / (\mathcal{J} \cap \mathcal{L})$.
Preliminaries

We are interested in Lie algebras related to $\mathbb{F}\langle \mathcal{X} \rangle$ described in the following.

1. **The free Lie algebra on \mathcal{X}** . . .
2. **. . . the Lie algebra over \mathbb{F} . . . [with] . . . generators $G_1, G_2, \ldots G_n$ and relations $f_1 = 0, f_2 = 0, \ldots, f_k = 0$. . .**
3. **Given an ideal \mathcal{J} of $\mathbb{F}\langle \mathcal{X} \rangle$, the Lie subalgebra of $\mathbb{F}\langle \mathcal{X} \rangle / \mathcal{J}$ generated by \mathcal{X} (or the set of all Lie polynomials in \mathcal{X} in the algebra $\mathbb{F}\langle \mathcal{X} \rangle / \mathcal{J}$) is precisely $\mathcal{L}/(\mathcal{J} \cap \mathcal{L})$.

Proposition

*With reference to above notation, given the canonical map $\varphi : \mathbb{F}\langle \mathcal{X} \rangle \to \mathbb{F}\langle \mathcal{X} \rangle / \mathcal{J}$, and a basis \mathcal{B} of \mathcal{L} then a spanning set for the Lie algebra $\mathcal{L}/(\mathcal{J} \cap \mathcal{L})$ consists of vectors of the form $

\varphi(X), \quad (X \in \mathcal{B}).
Proposition

With reference to above notation, given the canonical map \(\varphi : \mathbb{F}\langle X \rangle \rightarrow \mathbb{F}\langle X \rangle / J \), and a basis \(B \) of \(L \) then a spanning set for the Lie algebra \(L/(J \cap L) \) consists of vectors of the form

\[\varphi(X), \quad (X \in B). \]

Example

Let \(q \in \mathbb{F} \), and set \(X = \{ A, B \} \). Denote by \(J \) the ideal of \(\mathbb{F}\langle X \rangle \) generated by \(AB - qBA - I \). Then \(\mathcal{H}(q) = \mathbb{F}\langle X \rangle / J \).
Proposition

With reference to above notation, given the canonical map \(\varphi : \mathbb{F}\langle X \rangle \to \mathbb{F}\langle X \rangle / J \), and a basis \(B \) of \(L \) then a spanning set for the Lie algebra \(L/(J \cap L) \) consists of vectors of the form

\[\varphi(X), \quad (X \in B). \]

Example

Let \(q \in \mathbb{F} \), and set \(X = \{A, B\} \). Denote by \(J \) the ideal of \(\mathbb{F}\langle X \rangle \) generated by \(AB - qBA - I \). Then \(H(q) = \mathbb{F}\langle X \rangle / J \). The object of our study is the Lie subalgebra of \(H(q) \) generated by \(A, B \) which is precisely

\[\mathcal{L}(q) := L/(J \cap L). \]
Example

Let \(q \in \mathbb{F} \), and set \(\mathcal{X} = \{A, B\} \). Denote by \(\mathcal{J} \) the ideal of \(\mathbb{F} \langle \mathcal{X} \rangle \) generated by \(AB - qBA - I \). Then \(\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J} \). The object of our study is the Lie subalgebra of \(\mathcal{H}(q) \) generated by \(A, B \) which is precisely

\[
\mathcal{L}(q) := \mathcal{L}/(\mathcal{J} \cap \mathcal{L}).
\]
Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F}\langle \mathcal{X} \rangle$ generated by $AB - qBA - I$. Then $\mathcal{H}(q) = \mathbb{F}\langle \mathcal{X} \rangle / \mathcal{J}$. The object of our study is the Lie subalgebra of $\mathcal{H}(q)$ generated by A, B which is precisely

$$\mathcal{L}(q) := \mathcal{L}/(\mathcal{J} \cap \mathcal{L}).$$

From this point onward, we fix $\mathcal{X} = \{A, B\}$.

Rafael Cantuba

Undeformed commutators in q-deformed Heisenberg algebras
Let \(q \in \mathbb{F} \), and set \(\mathcal{X} = \{A, B\} \). Denote by \(\mathcal{J} \) the ideal of \(\mathbb{F} \langle \mathcal{X} \rangle \) generated by \(AB - qBA - I \). Then \(\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J} \). The object of our study is the Lie subalgebra of \(\mathcal{H}(q) \) generated by \(A, B \) which is precisely

\[
\mathcal{L}(q) := \mathcal{L}/(\mathcal{J} \cap \mathcal{L}).
\]

From this point onward, we fix \(\mathcal{X} = \{A, B\} \).

1. What basis of \(\mathcal{L} \) could be of use in studying \(\mathcal{L}(q) \)? (or more precisely, in determining a spanning set for \(\mathcal{L}(q) \) as described above?)
Example

Let \(q \in \mathbb{F} \), and set \(\mathcal{X} = \{A, B\} \). Denote by \(J \) the ideal of \(\mathbb{F} \langle \mathcal{X} \rangle \) generated by \(AB - qBA - I \). Then \(\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / J \). The object of our study is the Lie subalgebra of \(\mathcal{H}(q) \) generated by \(A, B \) which is precisely

\[
\mathcal{L}(q) := \mathcal{L}/(J \cap \mathcal{L}).
\]

From this point onward, we fix \(\mathcal{X} = \{A, B\} \).

1. What basis of \(\mathcal{L} \) could be of use in studying \(\mathcal{L}(q) \)? (or more precisely, in determining a spanning set for \(\mathcal{L}(q) \) as described above?)

2. Is it possible to use consequences of the relation \(AB - qBA - I = 0 \) to reduce the corresponding spanning set into a basis?
Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by $AB - qBA - I$. Then $\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$. The object of our study is the Lie subalgebra of $\mathcal{H}(q)$ generated by A, B which is precisely

$$\mathcal{L}(q) := \mathcal{L}/(\mathcal{J} \cap \mathcal{L}).$$

From this point onward, we fix $\mathcal{X} = \{A, B\}$.

1. What basis of \mathcal{L} could be of use in studying $\mathcal{L}(q)$? (or more precisely, in determining a spanning set for $\mathcal{L}(q)$ as described above?)

2. Is it possible to use consequences of the relation $AB - qBA - I = 0$ to reduce the corresponding spanning set into a basis?

3. Given a basis for $\mathcal{L}(q)$, compute the commutator table.
A basis for \mathcal{L} consisting of regular words on A, B

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on n generators, refer to arXiv:1709.02612 (Section 2).
A basis for \mathcal{L} consisting of regular words on A, B

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on n generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering $A < B$ on \mathcal{X}.
The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on n generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering $A < B$ on X. Denote two arbitrary distinct nonempty words on A, B by

$$U = X_1 X_2 \cdots X_{|U|},$$
$$V = Y_1 Y_2 \cdots Y_{|V|}.$$
A basis for \mathcal{L} consisting of regular words on A, B

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on n generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering $A < B$ on X. Denote two arbitrary distinct nonempty words on A, B by

\[
U = X_1 X_2 \cdots X_{|U|},
\]

\[
V = Y_1 Y_2 \cdots Y_{|V|}.
\]

If $|U| = |V|$,

Rafael Cantuba

Undeformed commutators in q-deformed Heisenberg algebras
The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on n generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering $A < B$ on X. Denote two arbitrary distinct nonempty words on A, B by

\[
U = X_1 X_2 \cdots X_{|U|}, \\
V = Y_1 Y_2 \cdots Y_{|V|}.
\]

If $|U| = |V|$, then we define $U < V$ if and only if for some $t \in \mathbb{Z}^+$ that does not exceed $\min\{|U|, |V|\}$, we have $X_t < Y_t$ and $X_i = Y_i$ for all $i < t$.

Rafael Cantuba

Undeformed commutators in q-deformed Heisenberg algebras
The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on \(n \) generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering \(A < B \) on \(X \). Denote two arbitrary distinct nonempty words on \(A, B \) by

\[
U = X_1 X_2 \cdots X_{|U|}, \\
V = Y_1 Y_2 \cdots Y_{|V|}.
\]

If \(|U| = |V| \), then we define \(U < V \) if and only if for some \(t \in \mathbb{Z}^+ \) that does not exceed \(\min\{|U|, |V|\} \), we have \(X_t < Y_t \) and \(X_i = Y_i \) for all \(i < t \). Define the ordering \(\triangleleft \) on \(\langle X \rangle \setminus \{I\} \).
A basis for \mathcal{L} consisting of regular words on A, B

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on n generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering $A < B$ on \mathcal{X}. Denote two arbitrary distinct nonempty words on A, B by

$$U = X_1 X_2 \cdots X_{|U|},$$

$$V = Y_1 Y_2 \cdots Y_{|V|}.$$

If $|U| = |V|$, then we define $U < V$ if and only if for some $t \in \mathbb{Z}^+$ that does not exceed $\min\{|U|, |V|\}$, we have $X_t < Y_t$ and $X_i = Y_i$ for all $i < t$. Define the ordering \triangleleft on $\langle \mathcal{X} \rangle \setminus \{I\}$ by $U \triangleleft V$ if and only if $UV < VU$.
A basis for \mathcal{L} consisting of regular words on A, B

Definition

Fix the ordering $A < B$ on X. Denote two arbitrary distinct nonempty words on A, B by

$$U = X_1X_2\cdots X_{|U|},$$

$$V = Y_1Y_2\cdots Y_{|V|}.$$

If $|U| = |V|$, then we define $U < V$ if and only if for some $t \in \mathbb{Z}^+$ that does not exceed $\min\{ |U|, |V| \}$, we have $X_t < Y_t$ and $X_i = Y_i$ for all $i < t$. Define the ordering \triangleleft on $\langle X \rangle \setminus \{I\}$ by $U \triangleleft V$ if and only if $UV < VU$.

Definition

A word on A, B is regular if it is a generator or if, with respect to \triangleleft, it is strictly greater than any of its cyclic permutations.
A basis for \mathcal{L} consisting of regular words on A, B

Definition

A word on A, B is regular if it is a generator or if, with respect to \prec, it is strictly greater than any of its cyclic permutations.

Example 1

The words B^3AB^2A and B^3A are regular.

Example 2

The words B^2AB^3A, B^2, and A^3 are not.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that $W = UV$, then U is regular.
A basis for \mathcal{L} consisting of regular words on A, B

Definition

A word on A, B is regular if it is a generator or if, with respect to \prec, it is strictly greater than any of its cyclic permutations.

Example

1. The words B^3AB^2A and B^3A are regular.
A basis for \mathcal{L} consisting of regular words on A, B

Definition
A word on A, B is regular if it is a generator or if, with respect to \prec, it is strictly greater than any of its cyclic permutations.

Example
1. The words $B^3 AB^2 A$ and $B^3 A$ are regular.
2. The words $B^2 AB^3 A$, B^2, and A^3 are not.
A basis for \mathcal{L} consisting of regular words on A, B

Definition
A word on A, B is regular if it is a generator or if, with respect to \triangleleft, it is strictly greater than any of its cyclic permutations.

Example
1. The words B^3AB^2A and B^3A are regular.
2. The words B^2AB^3A, B^2, and A^3 are not.

Lemma
If the word W is regular,
A basis for \mathcal{L} consisting of regular words on A, B

Definition

A word on A, B is regular if it is a generator or if, with respect to \prec, it is strictly greater than any of its cyclic permutations.

Example

1. The words B^3AB^2A and B^3A are regular.
2. The words B^2AB^3A, B^2, and A^3 are not.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular,
A basis for \mathcal{L} consisting of regular words on A, B

Definition

A word on A, B is regular if it is a generator or if, with respect to \prec, it is strictly greater than any of its cyclic permutations.

Example

1. The words B^3AB^2A and B^3A are regular.
2. The words B^2AB^3A, B^2, and A^3 are not.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that $W = UV,
A basis for \mathcal{L} consisting of regular words on A, B

Definition
A word on A, B is regular if it is a generator or if, with respect to \triangleleft, it is strictly greater than any of its cyclic permutations.

Example

1. The words B^3AB^2A and B^3A are regular.
2. The words B^2AB^3A, B^2, and A^3 are not.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that $W = UV$, then U is regular.
A basis for \mathcal{L} consisting of regular words on A, B

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that $W = UV$, then U is regular.
A basis for \mathcal{L} consisting of regular words on A, B

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that $W = UV$, then U is regular.

Definition

We define $[A] := A$, and $[B] := B$ as the regular nonassociative words on A, B of length 1.
Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that $W = UV$, then U is regular.

Definition

We define $[A] := A$, and $[B] := B$ as the regular nonassociative words on A, B of length 1. Given $t \in \mathbb{Z}^+$, suppose that all regular nonassociative words on A, B of lengths strictly less than t have been defined.
A basis for \mathcal{L} consisting of regular words on A, B

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that $W = UV$, then U is regular.

Definition

We define $[A] := A$, and $[B] := B$ as the *regular nonassociative words* on A, B of length 1. Given $t \in \mathbb{Z}^+$, suppose that all regular nonassociative words on A, B of lengths strictly less than t have been defined. Then given a regular word W of length t expressible as $W = UV$ according to the above lemma, we define $[W] := [[U], [V]].$
A basis for \mathcal{L} consisting of regular words on A, B

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that $W = UV$, then U is regular.

Definition

We define $[A] := A$, and $[B] := B$ as the regular nonassociative words on A, B of length 1. Given $t \in \mathbb{Z}^+$, suppose that all regular nonassociative words on A, B of lengths strictly less than t have been defined. Then given a regular word W of length t expressible as $W = UV$ according to the above lemma, we define $[W] := [[U], [V]]$.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Rafael Cantuba

Undeformed commutators in q-deformed Heisenberg algebras
A basis for \(\mathcal{L} \) consisting of regular words on \(A, B \)

Theorem

The regular nonassociative words on \(A, B \) form a basis for the free Lie algebra on \(A, B \).

Example

1. \(\left[BA^4 \right] = \)
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = $
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

\[[BA^4] = [[[BA^3], A], A] = \cdots = [[[B, A], A], A], A] \]
A basis for \(\mathcal{L} \) consisting of regular words on \(A, B \)

Theorem

The regular nonassociative words on \(A, B \) form a basis for the free Lie algebra on \(A, B \).

Example

1. \([BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A], A] \)
2. \([B^2A^4] \)
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A], A]$
2. $[B^2 A^4] = [B, [BA^4]] = \cdots$
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A], A]$
2. $[B^2A^4] = [B, [BA^4]] = \cdots = [B, [[[B, A], A], A], A]]$
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A]$
2. $[B^2A^4] = [B, [BA^4]] = \cdots = [B, [[[B, A], A], A], A]]$
3. $[B^3A^4] = [B, [B^2A^4]] = \cdots$
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[[[B, A], A], A] = \cdots = [[[B, A], A], A]

2. $[[[B, A], A], A] = \cdots = [[[[B, A], A], A], A]]$

3. $[[[[B, A], A], A], A] = \cdots$

4. $[B^3ABA^4]$
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A], A]$

2. $[B^2A^4] = [B, [BA^4]] = \cdots = [B, [[[B, A], A], A], A]$

3. $[B^3A^4] = [B, [B^2A^4]] = \cdots$

4. $[B^3ABA^4] = [B, [B^2ABA^4]]$

Rafael Cantuba

Undeformed commutators in q-deformed Heisenberg algebras
Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A], A]$
2. $[B^2A^4] = [B, [BA^4]] = \cdots = [B, [[[B, A], A], A], A]]$
3. $[B^3A^4] = [B, [B^2A^4]] = \cdots$
4. $[B^3ABA^4] = [B, [B^2ABA^4]] = [B, [B, [BABABA^4]]]]$
The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A]$
2. $[B^2A^4] = [B, [BA^4]] = \cdots = [B, [[[B, A], A]], A]$
3. $[B^3A^4] = [B, [B^2A^4]] = \cdots$
4. $[B^3ABA^4] = [B, [B^2ABA^4]] = [B, [B, [BABABA^4]]] = [B, [B, [[[BA], [BA^4]]]]] = \cdots$
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A], A]$
2. $[B^2A^4] = [B, [BA^4]] = \cdots = [B, [[[B, A], A], A], A]]$
3. $[B^3A^4] = [B, [B^2A^4]] = \cdots$
4. $[B^3ABA^4] = [B, [B^2ABA^4]] = [B, [B, [BABABA^4]]] = [B, [B, [[BA], [BA^4]]]] = \cdots$
5. $[B^3A^4BA]$
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A], A]$
2. $[B^2A^4] = [B, [BA^4]] = \cdots = [B, [[[B, A], A], A], A]]$
3. $[B^3A^4] = [B, [B^2A^4]] = \cdots$
4. $[B^3ABA^4] = [B, [B^2ABA^4]] = [B, [B, [BAB^2ABA^4]]] = [B, [B, [[[BA], [BA^4]]], \cdots$
5. $[B^3A^4BA] = [B, [[B^2A^4], [BA]]] = \cdots$
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A], A]$
2. $[B^2A^4] = [B, [BA^4]] = \cdots = [B, [[[B, A], A], A], A]$
3. $[B^3A^4] = [B, [B^2A^4]] = \cdots$
4. $[B^3ABA^4] = [B, [B^2ABA^4]] = [B, [B, [BABA^4]]] = [B, [B, [[BA], [BA]]], A], A], A]$
5. $[B^3A^4BA] = [B, [[[B^2A^4], [BA]]], A] = \cdots$
6. $[BAB^3A^4]$
A basis for \mathcal{L} consisting of regular words on A, B

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1. $[BA^4] = [[[BA^3], A] = \cdots = [[[B, A], A], A], A]$
2. $[B^2A^4] = [B, [BA^4]] = \cdots = [B, [[[B, A], A], A], A]]$
3. $[B^3A^4] = [B, [B^2A^4]] = \cdots$
4. $[B^3ABA^4] = [B, [B^2ABA^4]] = [B, [B, [BABA^4]]] = [B, [B, [[BA], [BA^4]]]] = \cdots$
5. $[B^3A^4BA] = [B, [[[B^2A^4], [BA]]] = \cdots$
6. $[BAB^3A^4]$ is undefined.
Effect of the relation $AB - qBA - I = 0$ on the regular words

To know which of the regular nonassociative words on A, B (spanning set elements of $\mathcal{L}(q)$) can be removed and obtain a maximal linearly independent set, the following result was consequential.

Lemma (Hellström and Silvestrov, 2005)
The following vectors form a basis for H^q.

\[
\begin{align*}
[A, B]^k, & \quad [A, B]^k A_l, B_l [A, B]^k, \\
(k \in \mathbb{N}, l \in \mathbb{Z}^+) & \quad (1)
\end{align*}
\]

How is the product of any two basis elements in (1) expressible as a linear combination of (1)?
Effect of the relation $AB - qBA - I = 0$ on the regular words

To know which of the regular nonassociative words on A, B (spanning set elements of $\mathcal{L}(q)$) can be removed and obtain a maximal linearly independent set, the following result was consequential.

Lemma (Hellström and Silvestrov, 2005)

The following vectors form a basis for $\mathcal{H}(q)$.

$$[A, B]^k, \quad [A, B]^k A^l, \quad B^l [A, B]^k, \quad (k \in \mathbb{N}, l \in \mathbb{Z}^+). \quad (1)$$
Effect of the relation $AB - qBA - I = 0$ on the regular words

To know which of the regular nonassociative words on A, B (spanning set elements of $\mathcal{L}(q)$) can be removed and obtain a maximal linearly independent set, the following result was consequential.

Lemma (Hellström and Silvestrov, 2005)

The following vectors form a basis for $\mathcal{H}(q)$.

$$[A, B]^k, \quad [A, B]^k A^l, \quad B^l [A, B]^k, \quad (k \in \mathbb{N}, l \in \mathbb{Z}^+). \quad (1)$$

How is the product of any two basis elements in (1) expressible as a linear combination of (1)?
Effect of the relation $AB - qBA - I = 0$ on the regular words

How is the product of any two basis elements in $[A, B]^k, [A, B]^k A^l, B^l [A, B]^k, (k \in \mathbb{N}, l \in \mathbb{Z}^+)$. expressible as a linear combination of such vectors? Towards answer: the following consequences of the simple relation $AB - qBA = I$.

Rafael Cantuba

Undeformed commutators in q-deformed Heisenberg algebras
Effect of the relation $AB - qBA - I = 0$ on the regular words

How is the product of any two basis elements in

$$[A, B]^k, \quad [A, B]^k A^l, \quad B^l [A, B]^k, \quad (k \in \mathbb{N}, l \in \mathbb{Z}^+).$$

expressible as a linear combination of such vectors? Towards answer: the following consequences of the simple relation $AB - qBA = I$.

$$[A, B]^k B^l = q^{kl} B^l [A, B]^k,$$

$$A^l [A, B]^k = q^{kl} [A, B]^k A^l,$$

$$B^l A^l = q^{-\binom{l}{2}} (q - 1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{l-i}{2}} \binom{l}{i} q [A, B]^i,$$

$$A^l B^l = (q - 1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{i+1}{2}} \binom{l}{i} q [A, B]^i.$$
Effect of the relation $AB - qBA - I = 0$ on the regular words

Some consequences of the simple relation $AB - qBA = I$.

$$[A, B]^k B^l = q^{kl} B^l [A, B]^k,$$
$$A^l [A, B]^k = q^{kl} [A, B]^k A^l,$$
$$B^l A^l = q^{-\binom{l}{2}} (q - 1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{i}{2}} \frac{\{l\}}{\{i\}_q} [A, B]^i,$$
$$A^l B^l = (q - 1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{i+1}{2}} \frac{\{l\}}{\{i\}_q} [A, B]^i,$$

where the expression $\frac{\{l\}}{\{i\}_q}$ is as described in the following: Given $n \in \mathbb{N}$, let
$$\{n\}_q := 1 + q + q^2 + \cdots + q^{n-1},$$
and $$\{n\}_q! := \{n\}_q \{n-1\}_q \cdots \{1\}_q.$$ If $k \in \mathbb{N}$ with $k \leq n$, we define the number $\frac{\{n\}_q!}{\{k\}_q! \{n-k\}_q!}$ as 1 if $k \in \{0, n\}$, or as the expression $$\frac{\{n\}_q!}{\{k\}_q! \{n-k\}_q!},$$ otherwise.
Effect of the relation $AB - qBA - I = 0$ on the regular words

Some consequences of the simple relation $AB - qBA = I$.

\begin{align*}
[A, B]^k B^l &= q^{kl} B^l [A, B]^k, \quad (2) \\
A^l [A, B]^k &= q^{kl} [A, B]^k A^l, \quad (3) \\
B^l A^l &= q^{-\binom{l}{2}}(q - 1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{l-i}{2}} \binom{l}{i}_q [A, B]^i, \quad (4) \\
A^l B^l &= (q - 1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{i+1}{2}} \binom{l}{i}_q [A, B]^i, \quad (5)
\end{align*}

Relations (2) to (4) are also from (Hellström and Silvestrov, 2005), while (5) was proven using routine computations and arguments (arXiv:1709.02612, Proposition 3.3).
Effect of the relation $AB - qBA - I = 0$ on the regular words

Some consequences of the simple relation $AB - qBA = I$.

\[[A, B]^k B^l = q^{kl} B^l [A, B]^k , \tag{2} \]
\[A^l [A, B]^k = q^{kl} [A, B]^k A^l , \tag{3} \]
\[B^l A^l = q^{-\left(\frac{l}{2}\right)} (q - 1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\left(\frac{l-i}{2}\right)} \left(\begin{array}{c} l \\ i \end{array}\right)_q [A, B]^i , \tag{4} \]
\[A^l B^l = (q - 1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\left(\frac{i+1}{2}\right)} \left(\begin{array}{c} l \\ i \end{array}\right)_q [A, B]^i , \tag{5} \]

Relations (2) to (4) are also from (Hellström and Silvestrov, 2005), while (5) was proven using routine computations and arguments (arXiv:1709.02612, Proposition 3.3). These relations were of significance in the proof of:
Effect of the relation $AB - qBA - I = 0$ on the regular words

Theorem (Cantuba, 2017)

If q is nonzero and is not a root of unity, then the following vectors form a basis for $\mathcal{L}(q)$.

$$ A, B, [BA], \left[(BA)^k BA^{l+1}\right], \left[B^{l+1} A(BA)^k\right], \left[B(BA)^k BA^2\right], \quad (k \in \mathbb{N}, l \in \mathbb{Z}^+) $$
Effect of the relation $AB - qBA - I = 0$ on the regular words

Theorem (Cantuba, 2017)

If q is nonzero and is not a root of unity, then the following vectors form a basis for $\mathcal{L}(q)$.

$$A, B, [BA], \biggl[(BA)^k BA^{l+1} \biggr],$$

$$\biggl[B^{l+1} A(BA)^k \biggr], \biggl[B(BA)^k BA^2 \biggr], \quad (k \in \mathbb{N}, l \in \mathbb{Z}^+).$$

$$A, B, [A, B]^k, \quad [A, B]^k A^l, \quad B^l [A, B]^k, \quad (k, l \in \mathbb{Z}^+).$$
Effect of the relation $AB - qBA - I = 0$ on the regular words

Theorem (Cantuba, 2017)

If q is nonzero and is not a root of unity, then the following vectors form a basis for $\mathcal{L}(q)$.

$$A, B, [BA], \left[(BA)^k BA^{l+1}\right],$$

$$\left[B^{l+1} A(BA)^k\right], \left[B(BA)^k BA^2\right], \quad (k \in \mathbb{N}, l \in \mathbb{Z}^+).$$
Effect of the relation $AB - qBA - I = 0$ on the regular words

Theorem (Cantuba, 2017)

If q is nonzero and is not a root of unity, then the following vectors form a basis for $\mathcal{L}(q)$.

$$A, B, [BA], \left[(BA)^k BA^{l+1}\right],$$

$$\left[B^{l+1} A(BA)^k\right], \left[B(BA)^k BA^2\right], \ (k \in \mathbb{N}, l \in \mathbb{Z}^+)$$

(details of the commutator table in arXiv 1709.02612, Section 5)
Other properties of $\mathcal{L}(q)$

Proposition (Cantuba, 2017)

$\mathcal{H}(q) = \mathcal{L}(q) \oplus \text{Span} \{I, A^2, B^2, A^3, B^3, \ldots\}$.

Corollary (Cantuba, 2017)
The Lie algebra $\mathcal{L}(q)$ is a Lie ideal of $\mathcal{H}(q)$. The resulting quotient Lie algebra has an infinite basis consisting of mutually commuting elements.
Other properties of $\mathcal{L}(q)$

Proposition (Cantuba, 2017)

$\mathcal{H}(q) = \mathcal{L}(q) \oplus \text{Span} \{ I, A^2, B^2, A^3, B^3, \ldots \}.$

Corollary (Cantuba, 2017)

The Lie algebra $\mathcal{L}(q)$ is a Lie ideal of $\mathcal{H}(q)$. The resulting quotient Lie algebra as an infinite basis consisting of mutually commuting elements.
For the case $\mathbb{F} = \mathbb{C}$, and $q \in]0, 1[$:

Using a result from (Hellström and Silvestrov, 2005), $H(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(N)$.

The generator B is represented by a unilateral weighted shift.

The generator A performs the role of the adjoint of B, (adjoint in the Hilbert space sense, and not in the context of Lie algebra derivations).

The element $[A, B]$ is hence a diagonal operator and is Hermitian.

The ideal of all the compact operators in $H(q)$ is precisely the derived (Lie) algebra of $L(q)$.

The resulting Calkin algebra is the complex Laurent polynomial algebra in one indeterminate.
For the case $\mathbb{F} = \mathbb{C}$, and $q \in]0, 1[$:

Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.

The generator B is represented by a unilateral weighted shift. The generator A performs the role of the adjoint of B, (adjoint in the Hilbert space sense, and not in the context of Lie algebra derivations).

The element $[A, B]$ is hence a diagonal operator and is Hermitian.

The ideal of all the compact operators in $\mathcal{H}(q)$ is precisely the derived (Lie) algebra of $L(q)$.

The resulting Calkin algebra is the complex Laurent polynomial algebra in one indeterminate.
Detour into Operator Theory

For the case $\mathbb{F} = \mathbb{C}$, and $q \in]0, 1[$:

1. Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.

2. The generator B is represented by a unilateral weighted shift.
For the case $\mathbb{F} = \mathbb{C}$, and $q \in]0, 1[$:

1. Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.

2. The generator B is represented by a unilateral weighted shift.

3. The generator A performs the role of the adjoint of B, (adjoint in the Hilbert space sense, and not in the context of Lie algebra derivations).
For the case $\mathbb{F} = \mathbb{C}$, and $q \in]0, 1[$:

1. Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.

2. The generator B is represented by a unilateral weighted shift.

3. The generator A performs the role of the adjoint of B, (adjoint in the Hilbert space sense, and not in the context of Lie algebra derivations).

4. The element $[A, B]$ is hence a diagonal operator and is Hermitian.
For the case $\mathbb{F} = \mathbb{C}$, and $q \in]0, 1[$:

1. Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.

2. The generator B is represented by a unilateral weighted shift.

3. The generator A performs the role of the adjoint of B, (adjoint in the Hilbert space sense, and not in the context of Lie algebra derivations).

4. The element $[A, B]$ is hence a diagonal operator and is Hermitian.

5. The ideal of all the compact operators in $\mathcal{H}(q)$ is precisely the derived (Lie) algebra of $\mathcal{L}(q)$.
For the case $\mathbb{F} = \mathbb{C}$, and $q \in]0, 1[$:

1. Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.

2. The generator B is represented by a unilateral weighted shift.

3. The generator A performs the role of the adjoint of B, (adjoint in the Hilbert space sense, and not in the context of Lie algebra derivations).

4. The element $[A, B]$ is hence a diagonal operator and is Hermitian.

5. The ideal of all the compact operators in $\mathcal{H}(q)$ is precisely the derived (Lie) algebra of $\mathcal{L}(q)$.

6. The resulting Calkin algebra is the complex Laurent polynomial algebra in one indeterminate.
The original setting for this type of Lie algebra problem

The Fairlie-Odesskii algebra:
\(U'_q(\mathfrak{so}_3) := \) the algebra with generators \(l_1, l_2, l_3 \) and relations

\[
\begin{align*}
q^{\frac{1}{2}} l_1 l_2 - q^{-\frac{1}{2}} l_2 l_1 &= l_3, \\
q^{\frac{1}{2}} l_2 l_3 - q^{-\frac{1}{2}} l_3 l_2 &= l_1, \\
q^{\frac{1}{2}} l_3 l_1 - q^{-\frac{1}{2}} l_1 l_3 &= l_2.
\end{align*}
\]
The original setting for this type of Lie algebra problem

The Fairlie-Odesskii algebra:
\[U'_q (\mathfrak{so}_3) := \text{the algebra with generators } l_1, l_2, l_3 \text{ and relations} \]
\[
q^{\frac{1}{2}} l_1 l_2 - q^{-\frac{1}{2}} l_2 l_1 = l_3,
\]
\[
q^{\frac{1}{2}} l_2 l_3 - q^{-\frac{1}{2}} l_3 l_2 = l_1,
\]
\[
q^{\frac{1}{2}} l_3 l_1 - q^{-\frac{1}{2}} l_1 l_3 = l_2.
\]

The universal Askey-Wilson algebra:

some form of generalization encompasing \(U'_q (\mathfrak{so}_3) \) and some other algebras introduced in (Terwilliger, 2011)
The original setting for this type of Lie algebra problem

The Fairlie-Odesskii algebra:
\[U'_q(\mathfrak{so}_3) := \text{the algebra with generators} \ l_1, l_2, l_3 \text{ and relations} \]

\[
q^{\frac{1}{2}} l_1 l_2 - q^{-\frac{1}{2}} l_2 l_1 = l_3, \\
q^{\frac{1}{2}} l_2 l_3 - q^{-\frac{1}{2}} l_3 l_2 = l_1, \\
q^{\frac{1}{2}} l_3 l_1 - q^{-\frac{1}{2}} l_1 l_3 = l_2.
\]

The universal Askey-Wilson algebra:
some form of generalization encompassing \(U'_q(\mathfrak{so}_3) \) and some other algebras introduced in (Terwilliger, 2011)

\[
\vdots
\]

(same type of Lie algebra problems for the above algebras)

Thank you for your attention!!!