Undeformed commutators in *q*-deformed Heisenberg algebras

Rafael Cantuba

De La Salle University, Manila

Introduction

Definition

Let \mathbb{F} be a field, and let $q \in \mathbb{F}$. The q-deformed Heisenberg algebra $\mathcal{H}(q)$ is the unital associative algebra over \mathbb{F} that has a presentation by generators A,B and relation

$$AB - qBA = I$$
,

where I is the multiplicative identity.

Introduction

Definition

Let \mathbb{F} be a field, and let $q \in \mathbb{F}$. The q-deformed Heisenberg algebra $\mathcal{H}(q)$ is the unital associative algebra over \mathbb{F} that has a presentation by generators A,B and relation

$$AB - qBA = I$$
,

where I is the multiplicative identity.

A Lie algebra structure is induced by [U, V] := UV - VU for all $U, V \in \mathcal{H}(q)$.

Introduction

Definition

Let $\mathbb F$ be a field, and let $q\in\mathbb F$. The q-deformed Heisenberg algebra $\mathcal H(q)$ is the unital associative algebra over $\mathbb F$ that has a presentation by generators A,B and relation

$$AB - qBA = I$$
,

where I is the multiplicative identity.

A Lie algebra structure is induced by [U, V] := UV - VU for all $U, V \in \mathcal{H}(q)$.

Goal: Study the Lie subalgebra $\mathfrak{L}(q)$ of $\mathcal{H}(q)$ generated by A, B.

Some notation:

```
\mathbb{F} = \text{arbitrary field},
\mathbb{N} = \text{set of all nonnegative integers},
```

 $\mathbb{Z}^+ = \text{set of all positive integers},$

Some notation:

```
\mathbb{F} = arbitrary field,
```

 $\mathbb{N} \ = \ \text{set of all nonnegative integers},$

 \mathbb{Z}^+ = set of all positive integers,

 $\mathcal{X} = \text{an } n\text{-element set, given a fixed } n \in \mathbb{N}.$

Some notation:

 \mathbb{F} = arbitrary field,

 $\mathbb{N} = \text{set of all nonnegative integers},$

 \mathbb{Z}^+ = set of all positive integers,

 $\mathcal{X} = \text{an } n\text{-element set, given a fixed } n \in \mathbb{N}.$

Some preliminary notions:

① Let $t \in \mathbb{N}$. By a word of length t on \mathcal{X} we mean a finite sequence of the form

$$X_1X_2\cdots X_t$$

where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, ..., t\}$.

Some preliminary notions:

① Let $t \in \mathbb{N}$. By a *word* of *length* t on \mathcal{X} we mean a finite sequence of the form

$$X_1X_2\cdots X_t$$

where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, ..., t\}$.

Some preliminary notions:

① Let $t \in \mathbb{N}$. By a *word* of *length* t on \mathcal{X} we mean a finite sequence of the form

$$X_1X_2\cdots X_t$$

where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, ..., t\}$.

We denote the word of length 0 by I.

Some preliminary notions:

① Let $t \in \mathbb{N}$. By a *word* of *length* t on \mathcal{X} we mean a finite sequence of the form

$$X_1X_2\cdots X_t$$

where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, ..., t\}$.

- 2 We denote the word of length 0 by 1.
- **3** Given a word W, we denote the length of W by |W|.

Some preliminary notions:

• Let $t \in \mathbb{N}$. By a word of length t on \mathcal{X} we mean a finite sequence of the form

$$X_1X_2\cdots X_t$$

where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, ..., t\}$.

- 2 We denote the word of length 0 by 1.
- **3** Given a word W, we denote the length of W by |W|.
- Given words $X_1X_2 \cdots X_s$ and $Y_1Y_2 \cdots Y_t$ on \mathcal{X} , their concatenation product is the word

$$X_1X_2\cdots X_sY_1Y_2\cdots Y_t$$
.

Some preliminary notions:

• Let $t \in \mathbb{N}$. By a word of length t on \mathcal{X} we mean a finite sequence of the form

$$X_1X_2\cdots X_t$$

where $X_i \in \mathcal{X}$ for all $i \in \{1, 2, ..., t\}$.

- We denote the word of length 0 by I.
- **3** Given a word W, we denote the length of W by |W|.
- **①** Given words $X_1X_2\cdots X_s$ and $Y_1Y_2\cdots Y_t$ on \mathcal{X} , their concatenation product is the word

$$X_1X_2\cdots X_sY_1Y_2\cdots Y_t$$
.

 $\langle \mathcal{X} \rangle$:= the set of all words on \mathcal{X}

 $\mathbb{F}\left\langle \mathcal{X}\right
angle :=$ the free unital associative algebra on \mathbb{F}

 $\mathbb{F}\left\langle \mathcal{X}\right
angle :=$ the free unital associative algebra on \mathbb{F}

(From this point onward: algebra \Leftrightarrow unital associative algebra over \mathbb{F})

 $\mathbb{F}\left\langle \mathcal{X}\right\rangle :=$ the free unital associative algebra on \mathbb{F}

(From this point onward: algebra \Leftrightarrow unital associative algebra over \mathbb{F})

Recall: some pertinent properties of $\mathbb{F}\langle \mathcal{X} \rangle$:

 $\mathbb{F}\left\langle \mathcal{X}\right\rangle :=$ the free unital associative algebra on \mathbb{F}

(From this point onward: algebra \Leftrightarrow unital associative algebra over \mathbb{F})

Recall: some pertinent properties of $\mathbb{F}\langle \mathcal{X} \rangle$:

 $\bullet \quad \text{A basis for } \mathbb{F} \langle \mathcal{X} \rangle \text{ is } \langle \mathcal{X} \rangle.$

 $\mathbb{F}\left\langle \mathcal{X}\right\rangle :=$ the free unital associative algebra on \mathbb{F}

(From this point onward: algebra \Leftrightarrow unital associative algebra over \mathbb{F})

Recall: some pertinent properties of $\mathbb{F}\langle \mathcal{X} \rangle$:

- **1** A basis for $\mathbb{F}\langle \mathcal{X} \rangle$ is $\langle \mathcal{X} \rangle$.
- ② The multiplication operation in $\mathbb{F}\langle\mathcal{X}\rangle$ is completely determined by the concatenation product of words on \mathcal{X} .

 $\mathbb{F}\left\langle \mathcal{X}\right\rangle :=$ the free unital associative algebra on \mathbb{F}

(From this point onward: algebra \Leftrightarrow unital associative algebra over \mathbb{F})

Recall: some pertinent properties of $\mathbb{F}\langle \mathcal{X} \rangle$:

- **1** A basis for $\mathbb{F}\langle \mathcal{X} \rangle$ is $\langle \mathcal{X} \rangle$.
- ② The multiplication operation in $\mathbb{F}\langle\mathcal{X}\rangle$ is completely determined by the concatenation product of words on \mathcal{X} .
- **③** Let $f_1, f_2, \ldots, f_k \in \mathbb{F} \langle \mathcal{X} \rangle$, and let \mathcal{J} be the (two-sided) ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by f_1, f_2, \ldots, f_k . Denote the elements of \mathcal{X} by G_1, G_2, \ldots, G_n . Then the algebra defined by a presentation having generators G_1, G_2, \ldots, G_n and relations $f_1 = 0, f_2 = 0, \ldots, f_k = 0$ is precisely the quotient algebra $\mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$.

Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by AB - qBA - I. Then $\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$.

• The free Lie algebra on $\mathcal X$ (or the set of all Lie polynomials in $\mathcal X$) is the Lie subalgebra $\mathcal L:=\mathcal L_{\mathcal X}$ of $\mathbb F\left<\mathcal X\right>$ generated by $\mathcal X.$

- ① The free Lie algebra on $\mathcal X$ (or the set of all Lie polynomials in $\mathcal X$) is the Lie subalgebra $\mathcal L:=\mathcal L_{\mathcal X}$ of $\mathbb F\left<\mathcal X\right>$ generated by $\mathcal X$.
- ② Analogous to a property of $\mathbb{F}\langle\mathcal{X}\rangle$: Any Lie algebra generated by $|\mathcal{X}|$ elements is a quotient of \mathcal{L} .

- The free Lie algebra on \mathcal{X} (or the set of all Lie polynomials in \mathcal{X}) is the Lie subalgebra $\mathcal{L} := \mathcal{L}_{\mathcal{X}}$ of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by \mathcal{X} .
- ② Analogous to a property of $\mathbb{F}\langle\mathcal{X}\rangle$: Any Lie algebra generated by $|\mathcal{X}|$ elements is a quotient of \mathcal{L} .
- **3** Given an ideal $\mathcal J$ of $\mathbb F\langle\mathcal X\rangle$, the Lie subalgebra of $\mathbb F\langle\mathcal X\rangle/\mathcal J$ generated by

- The free Lie algebra on $\mathcal X$ (or the set of all Lie polynomials in $\mathcal X$) is the Lie subalgebra $\mathcal L:=\mathcal L_{\mathcal X}$ of $\mathbb F\left<\mathcal X\right>$ generated by $\mathcal X$.
- ② Analogous to a property of $\mathbb{F}\langle \mathcal{X} \rangle$: Any Lie algebra generated by $|\mathcal{X}|$ elements is a quotient of \mathcal{L} .
- **3** Given an ideal \mathcal{J} of $\mathbb{F}\langle\mathcal{X}\rangle$, the Lie subalgebra of $\mathbb{F}\langle\mathcal{X}\rangle/\mathcal{J}$ generated by \mathcal{X} (or the set of all Lie polynomials in \mathcal{X} in the algebra $\mathbb{F}\langle\mathcal{X}\rangle/\mathcal{J}$)

- The free Lie algebra on $\mathcal X$ (or the set of all Lie polynomials in $\mathcal X$) is the Lie subalgebra $\mathcal L:=\mathcal L_{\mathcal X}$ of $\mathbb F\left<\mathcal X\right>$ generated by $\mathcal X$.
- ② Analogous to a property of $\mathbb{F}\langle\mathcal{X}\rangle$: Any Lie algebra generated by $|\mathcal{X}|$ elements is a quotient of \mathcal{L} .
- **3** Given an ideal \mathcal{J} of $\mathbb{F}\langle\mathcal{X}\rangle$, the Lie subalgebra of $\mathbb{F}\langle\mathcal{X}\rangle/\mathcal{J}$ generated by \mathcal{X} (or the set of all Lie polynomials in \mathcal{X} in the algebra $\mathbb{F}\langle\mathcal{X}\rangle/\mathcal{J}$) is precisely $\mathcal{L}/(\mathcal{J}\cap\mathcal{L})$.

We are interested in Lie algebras related to $\mathbb{F}\langle\mathcal{X}\rangle$ described in the following.

- lacktriangle The free Lie algebra on \mathcal{X} ...
- ② ... the Lie algebra over \mathbb{F} ... [with] ... generators $G_1, G_2, \ldots G_n$ and relations $f_1 = 0, f_2 = 0, \ldots, f_k = 0 \ldots$
- **③** Given an ideal \mathcal{J} of $\mathbb{F}\langle \mathcal{X} \rangle$, the Lie subalgebra of $\mathbb{F}\langle \mathcal{X} \rangle / \mathcal{J}$ generated by \mathcal{X} (or the set of all Lie polynomials in \mathcal{X} in the algebra $\mathbb{F}\langle \mathcal{X} \rangle / \mathcal{J}$) is precisely $\mathcal{L}/(\mathcal{J} \cap \mathcal{L})$.

Proposition

With reference to above notation, given the canonical map $\varphi: \mathbb{F} \langle \mathcal{X} \rangle \to \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$, and a basis \mathcal{B} of \mathcal{L} then a spanning set for the Lie algebra $\mathcal{L}/(\mathcal{J} \cap \mathcal{L})$ consists of vectors of the form

$$\varphi(X)$$
, $(X \in \mathcal{B})$.

Proposition

With reference to above notation, given the canonical map $\varphi: \mathbb{F} \langle \mathcal{X} \rangle \to \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$, and a basis \mathcal{B} of \mathcal{L} then a spanning set for the Lie algebra $\mathcal{L}/(\mathcal{J} \cap \mathcal{L})$ consists of vectors of the form

$$\varphi(X), \qquad (X \in \mathcal{B}).$$

Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by AB - qBA - I. Then $\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$.

Proposition

With reference to above notation, given the canonical map $\varphi: \mathbb{F} \langle \mathcal{X} \rangle \to \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$, and a basis \mathcal{B} of \mathcal{L} then a spanning set for the Lie algebra $\mathcal{L}/(\mathcal{J} \cap \mathcal{L})$ consists of vectors of the form

$$\varphi(X)$$
, $(X \in \mathcal{B})$.

Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by AB - qBA - I. Then $\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$. The object of our study is the Lie subalgebra of $\mathcal{H}(q)$ generated by A, B which is precisely

$$\mathfrak{L}(q) := \mathcal{L}/(\mathcal{J} \cap \mathcal{L}).$$

Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by AB - qBA - I. Then $\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$. The object of our study is the Lie subalgebra of $\mathcal{H}(q)$ generated by A, B which is precisely

$$\mathfrak{L}(q) := \mathcal{L}/(\mathcal{J} \cap \mathcal{L}).$$

Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by AB - qBA - I. Then $\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$. The object of our study is the Lie subalgebra of $\mathcal{H}(q)$ generated by A, B which is precisely

$$\mathfrak{L}(q) := \mathcal{L}/(\mathcal{J} \cap \mathcal{L}).$$

From this point onward, we fix $\mathcal{X} = \{A, B\}$.

Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by AB - qBA - I. Then $\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$. The object of our study is the Lie subalgebra of $\mathcal{H}(q)$ generated by A, B which is precisely

$$\mathfrak{L}(q) := \mathcal{L}/(\mathcal{J} \cap \mathcal{L}).$$

From this point onward, we fix $\mathcal{X} = \{A, B\}$.

• What basis of \mathcal{L} could be of use in studying $\mathfrak{L}(q)$? (or more precisely, in determining a spanning set for $\mathfrak{L}(q)$ as described above?)

Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by AB - qBA - I. Then $\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$. The object of our study is the Lie subalgebra of $\mathcal{H}(q)$ generated by A, B which is precisely

$$\mathfrak{L}(q) := \mathcal{L}/(\mathcal{J} \cap \mathcal{L}).$$

From this point onward, we fix $\mathcal{X} = \{A, B\}$.

- What basis of \mathcal{L} could be of use in studying $\mathfrak{L}(q)$? (or more precisely, in determining a spanning set for $\mathfrak{L}(q)$ as described above?)
- 2 Is it possible to use consequences of the relation AB qBA I = 0 to reduce the corresponding spanning set into a basis?

Example

Let $q \in \mathbb{F}$, and set $\mathcal{X} = \{A, B\}$. Denote by \mathcal{J} the ideal of $\mathbb{F} \langle \mathcal{X} \rangle$ generated by AB - qBA - I. Then $\mathcal{H}(q) = \mathbb{F} \langle \mathcal{X} \rangle / \mathcal{J}$. The object of our study is the Lie subalgebra of $\mathcal{H}(q)$ generated by A, B which is precisely

$$\mathfrak{L}(q) := \mathcal{L}/(\mathcal{J} \cap \mathcal{L}).$$

From this point onward, we fix $\mathcal{X} = \{A, B\}$.

- What basis of \mathcal{L} could be of use in studying $\mathfrak{L}(q)$? (or more precisely, in determining a spanning set for $\mathfrak{L}(q)$ as described above?)
- ② Is it possible to use consequences of the relation AB qBA I = 0 to reduce the corresponding spanning set into a basis?
- **3** Given a basis for $\mathfrak{L}(q)$, compute the commutator table.

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on *n* generators, refer to arXiv:1709.02612 (Section 2).

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on *n* generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering A < B on \mathcal{X} .

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on *n* generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering A < B on \mathcal{X} . Denote two arbitrary distinct nonempty words on A, B by

$$U = X_1 X_2 \cdots X_{|U|},$$

$$V = Y_1 Y_2 \cdots Y_{|V|}.$$

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on *n* generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering A < B on \mathcal{X} . Denote two arbitrary distinct nonempty words on A, B by

$$U = X_1 X_2 \cdots X_{|U|},$$

$$V = Y_1 Y_2 \cdots Y_{|V|}.$$

If
$$|U| = |V|$$
,

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on *n* generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering A < B on \mathcal{X} . Denote two arbitrary distinct nonempty words on A, B by

$$U = X_1 X_2 \cdots X_{|U|},$$

$$V = Y_1 Y_2 \cdots Y_{|V|}.$$

If |U| = |V|, then we define U < V if and only if for some $t \in \mathbb{Z}^+$ that does not exceed $\min\{|U|,|V|\}$, we have $X_t < Y_t$ and $X_i = Y_i$ for all i < t.

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on n generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering A < B on \mathcal{X} . Denote two arbitrary distinct nonempty words on A, B by

$$U = X_1 X_2 \cdots X_{|U|},$$

$$V = Y_1 Y_2 \cdots Y_{|V|}.$$

If |U| = |V|, then we define U < V if and only if for some $t \in \mathbb{Z}^+$ that does not exceed $\min\{|U|,|V|\}$, we have $X_t < Y_t$ and $X_i = Y_i$ for all i < t. Define the ordering \lhd on $\langle \mathcal{X} \rangle \setminus \{I\}$

The following notions are from the formulation given in (Ufnarovskij, 1995). For a full discussion on regular words on *n* generators, refer to arXiv:1709.02612 (Section 2).

Definition

Fix the ordering A < B on \mathcal{X} . Denote two arbitrary distinct nonempty words on A, B by

$$U = X_1 X_2 \cdots X_{|U|},$$

$$V = Y_1 Y_2 \cdots Y_{|V|}.$$

If |U| = |V|, then we define U < V if and only if for some $t \in \mathbb{Z}^+$ that does not exceed $\min\{|U|,|V|\}$, we have $X_t < Y_t$ and $X_i = Y_i$ for all i < t. Define the ordering \lhd on $\langle \mathcal{X} \rangle \setminus \{I\}$ by $U \lhd V$ if and only if UV < VU.

Definition

Fix the ordering A < B on \mathcal{X} . Denote two arbitrary distinct nonempty words on A,B by

$$U = X_1 X_2 \cdots X_{|U|},$$

$$V = Y_1 Y_2 \cdots Y_{|V|}.$$

If |U| = |V|, then we define U < V if and only if for some $t \in \mathbb{Z}^+$ that does not exceed $\min\{|U|,|V|\}$, we have $X_t < Y_t$ and $X_i = Y_i$ for all i < t. Define the ordering \lhd on $\langle \mathcal{X} \rangle \setminus \{I\}$ by $U \lhd V$ if and only if UV < VU.

Definition

A word on A, B is regular if it is a generator or if, with respect to \lhd , it is strictly greater than any of its cyclic permutations.

Definition

A word on A, B is regular if it is a generator or if, with respect to \lhd , it is strictly greater than any of its cyclic permutations.

Definition

A word on A, B is regular if it is a generator or if, with respect to \triangleleft , it is strictly greater than any of its cyclic permutations.

Example

1 The words B^3AB^2A and B^3A are regular.

Definition

A word on A, B is regular if it is a generator or if, with respect to \triangleleft , it is strictly greater than any of its cyclic permutations.

- The words B^3AB^2A and B^3A are regular.
- ② The words B^2AB^3A , B^2 , and A^3 are not.

Definition

A word on A, B is regular if it is a generator or if, with respect to \triangleleft , it is strictly greater than any of its cyclic permutations.

Example

- The words B^3AB^2A and B^3A are regular.
- 2 The words B^2AB^3A , B^2 , and A^3 are not.

Lemma

If the word W is regular,

Definition

A word on A, B is regular if it is a generator or if, with respect to \triangleleft , it is strictly greater than any of its cyclic permutations.

Example

- The words B^3AB^2A and B^3A are regular.
- 2 The words B^2AB^3A , B^2 , and A^3 are not.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular,

Definition

A word on A, B is regular if it is a generator or if, with respect to \triangleleft , it is strictly greater than any of its cyclic permutations.

Example

- The words B^3AB^2A and B^3A are regular.
- 2 The words B^2AB^3A , B^2 , and A^3 are not.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that W = UV,

Definition

A word on A, B is regular if it is a generator or if, with respect to \triangleleft , it is strictly greater than any of its cyclic permutations.

Example

- The words B^3AB^2A and B^3A are regular.
- ② The words B^2AB^3A , B^2 , and A^3 are not.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that W = UV, then U is regular.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that W = UV, then U is regular.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that W = UV, then U is regular.

Definition

We define $[\![A]\!] := A$, and $[\![B]\!] := B$ as the *regular nonassociative* words on A, B of length 1.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that W = UV, then U is regular.

Definition

We define $[\![A]\!] := A$, and $[\![B]\!] := B$ as the *regular nonassociative* words on A, B of length 1. Given $t \in \mathbb{Z}^+$, suppose that all regular nonassociative words on A, B of lengths strictly less t have been defined.

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that W = UV, then U is regular.

Definition

We define $[\![A]\!] := A$, and $[\![B]\!] := B$ as the *regular nonassociative* words on A, B of length 1. Given $t \in \mathbb{Z}^+$, suppose that all regular nonassociative words on A, B of lengths strictly less t have been defined. Then given a regular word W of length t expressible as W = UV according to the above lemma, we define $[\![W]\!] := [\![U]\!], [\![V]\!].$

Lemma

If the word W is regular, and if V is the length-maximal proper ending of W that is also regular, and if U is the word such that W = UV, then U is regular.

Definition

We define $[\![A]\!] := A$, and $[\![B]\!] := B$ as the *regular nonassociative* words on A, B of length 1. Given $t \in \mathbb{Z}^+$, suppose that all regular nonassociative words on A, B of lengths strictly less t have been defined. Then given a regular word W of length t expressible as W = UV according to the above lemma, we define $[\![W]\!] := [\![U]\!], [\![V]\!].$

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Example

1 $[BA^4] =$

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

- **2** $[B^2A^4]$

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

- **6** $[B^3A^4BA]$

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

- **3** $[B^3A^4BA] = [B, [[B^2A^4], [BA]]] = \cdots$

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

- **3** $[B^3A^4BA] = [B, [[B^2A^4], [BA]]] = \cdots$
- **6** $[BAB^3A^4]$

Theorem

The regular nonassociative words on A, B form a basis for the free Lie algebra on A, B.

- **3** $[B^3A^4BA] = [B, [[B^2A^4], [BA]]] = \cdots$
- **1** $[BAB^3A^4]$ is undefined.

To know which of the regular nonassociative words on A, B (spanning set elements of $\mathfrak{L}(q)$) can be removed and obtain a maximal linearly independent set, the following result was consequential.

To know which of the regular nonassociative words on A, B (spanning set elements of $\mathfrak{L}(q)$) can be removed and obtain a maximal linearly independent set, the following result was consequential.

Lemma (Hellström and Silvestrov, 2005)

The following vectors form a basis for $\mathcal{H}(q)$.

$$[A, B]^k$$
, $[A, B]^k A^l$, $B^l [A, B]^k$, $(k \in \mathbb{N}, l \in \mathbb{Z}^+)$. (1)

To know which of the regular nonassociative words on A, B (spanning set elements of $\mathfrak{L}(q)$) can be removed and obtain a maximal linearly independent set, the following result was consequential.

Lemma (Hellström and Silvestrov, 2005)

The following vectors form a basis for $\mathcal{H}(q)$.

$$[A, B]^k$$
, $[A, B]^k A^l$, $B^l [A, B]^k$, $(k \in \mathbb{N}, l \in \mathbb{Z}^+)$. (1)

How is the product of any two basis elements in (1) expressible as a linear combination of (1)?

How is the product of any two basis elements in

$$[A, B]^k$$
, $[A, B]^k A^l$, $B^l [A, B]^k$, $(k \in \mathbb{N}, l \in \mathbb{Z}^+)$.

expressible as a linear combination of such vectors? Towards answer: the following consequences of the simple relation AB - gBA = I.

How is the product of any two basis elements in

$$[A, B]^k$$
, $[A, B]^k A^l$, $B^l [A, B]^k$, $(k \in \mathbb{N}, l \in \mathbb{Z}^+)$.

expressible as a linear combination of such vectors? Towards answer: the following consequences of the simple relation AB - qBA = I.

$$[A, B]^{k} B^{l} = q^{kl} B^{l} [A, B]^{k},$$

$$A^{l} [A, B]^{k} = q^{kl} [A, B]^{k} A^{l},$$

$$B^{l} A^{l} = q^{-\binom{l}{2}} (q-1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{l-i}{2}} \binom{l}{i}_{q} [A, B]^{i},$$

$$A^{l} B^{l} = (q-1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{i+1}{2}} \binom{l}{i}_{q} [A, B]^{i}.$$

Some consequences of the simple relation AB - qBA = I.

$$[A, B]^{k} B^{l} = q^{kl} B^{l} [A, B]^{k},$$

$$A^{l} [A, B]^{k} = q^{kl} [A, B]^{k} A^{l},$$

$$B^{l} A^{l} = q^{-\binom{l}{2}} (q-1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{l-i}{2}} \binom{l}{i}_{q} [A, B]^{i},$$

$$A^{l} B^{l} = (q-1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{i+1}{2}} \binom{l}{i}_{q} [A, B]^{i},$$

where the expression $\binom{l}{i}_q$ is as described in the following: Given $n \in \mathbb{N}$, let $\{n\}_q := 1+q+q^2+\cdots+q^{n-1}$, and $\{n\}_q! := \{n\}_q\{n-1\}_q\cdots\{1\}_q$. If $k \in \mathbb{N}$ with $k \leq n$, we define the number $\binom{n}{k}_q$ as 1 if $k \in \{0,n\}$, or as the expression $\frac{\{n\}_q!}{\{k\}_q!\{n-k\}_q!}$, otherwise.

Some consequences of the simple relation AB - qBA = I.

$$[A, B]^{k} B^{l} = q^{kl} B^{l} [A, B]^{k}, (2)$$

$$A^{l}[A,B]^{k} = q^{kl}[A,B]^{k}A^{l},$$
 (3)

$$B^{I}A^{I} = q^{-\binom{I}{2}}(q-1)^{-I}\sum_{i=0}^{I}(-1)^{I-i}q^{\binom{I-i}{2}}\binom{I}{i}_{q}[A,B]^{i},(4)$$

$$A^{l}B^{l} = (q-1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{i+1}{2}} \binom{l}{i}_{q} [A, B]^{i}, \qquad (5)$$

Relations (2) to (4) are also from (Hellström and Silvestrov, 2005), while (5) was proven using routine computations and arguments (arXiv:1709.02612, Proposition 3.3).

Some consequences of the simple relation AB - qBA = I.

$$[A, B]^{k} B^{l} = q^{kl} B^{l} [A, B]^{k}, (2)$$

$$A^{l}[A,B]^{k} = q^{kl}[A,B]^{k}A^{l},$$
 (3)

$$B^{I}A^{I} = q^{-\binom{I}{2}}(q-1)^{-I}\sum_{i=0}^{I}(-1)^{I-i}q^{\binom{I-i}{2}}\binom{I}{i}_{q}[A,B]^{i},(4)$$

$$A^{l}B^{l} = (q-1)^{-l} \sum_{i=0}^{l} (-1)^{l-i} q^{\binom{i+1}{2}} \binom{l}{i}_{q} [A, B]^{i}, \qquad (5)$$

Relations (2) to (4) are also from (Hellström and Silvestrov, 2005), while (5) was proven using routine computations and arguments (arXiv:1709.02612, Proposition 3.3). These relations were of significance in the proof of:

Theorem (Cantuba, 2017)

If q is nonzero and is not a root of unity, then the following vectors form a basis for $\mathfrak{L}(q)$.

$$A, B, \llbracket BA
rbracket, \llbracket (BA)^k BA^{l+1}
rbracket,$$

$$\llbracket B^{l+1} A (BA)^k
rbracket, \llbracket B (BA)^k BA^2
rbracket, \quad (k \in \mathbb{N}, l \in \mathbb{Z}^+).$$

Theorem (Cantuba, 2017)

If q is nonzero and is not a root of unity, then the following vectors form a basis for $\mathfrak{L}(q)$.

$$A, B, \llbracket BA
rbracket, \llbracket (BA)^k BA^{l+1}
rbracket,$$

$$\llbracket B^{l+1} A (BA)^k
rbracket, \llbracket B (BA)^k BA^2
rbracket, \quad (k \in \mathbb{N}, l \in \mathbb{Z}^+).$$

$$A, B, [A, B]^k, [A, B]^k A^l, B^l [A, B]^k, (k, l \in \mathbb{Z}^+).$$

Theorem (Cantuba, 2017)

If q is nonzero and is not a root of unity, then the following vectors form a basis for $\mathfrak{L}(q)$.

$$A, B, \llbracket BA
rbracket, \llbracket (BA)^k BA^{l+1}
rbracket,$$

 $\llbracket B^{l+1} A (BA)^k
rbracket, \llbracket B (BA)^k BA^2
rbracket, \quad (k \in \mathbb{N}, l \in \mathbb{Z}^+).$

Theorem (Cantuba, 2017)

If q is nonzero and is not a root of unity, then the following vectors form a basis for $\mathfrak{L}(q)$.

$$A, B, \llbracket BA
rbracket, \llbracket (BA)^k BA^{l+1}
rbracket,$$

$$\llbracket B^{l+1} A (BA)^k
rbracket, \llbracket B (BA)^k BA^2
rbracket, \quad (k \in \mathbb{N}, l \in \mathbb{Z}^+).$$

(details of the commutator table in arXiv 1709.02612, Section 5)

Other properties of $\mathfrak{L}(q)$

Proposition (Cantuba, 2017)

$$\mathcal{H}(q) = \mathfrak{L}(q) \oplus \mathrm{Span} \ \{I, A^2, B^2, A^3, B^3, \ldots\}.$$

Other properties of $\mathfrak{L}(q)$

Proposition (Cantuba, 2017)

$$\mathcal{H}(q) = \mathfrak{L}(q) \oplus \text{Span } \{I, A^2, B^2, A^3, B^3, \ldots\}.$$

Corollary (Cantuba, 2017)

The Lie algebra $\mathfrak{L}(q)$ is a Lie ideal of $\mathcal{H}(q)$. The resulting quotient Lie algebra as an infinite basis consisting of mutually commuting elements.

For the case $\mathbb{F}=\mathbb{C}$, and $q\in]0,1[$:

① Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.

- Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.

- Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.
- ② The generator B is represented by a unilateral weighted shift.
- The generator A performs the role of the adjoint of B, (adjoint in the Hilbert space sense, and not in the context of Lie algebra derivations).

- ① Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.
- ② The generator B is represented by a unilateral weighted shift.
- The generator A performs the role of the adjoint of B, (adjoint in the Hilbert space sense, and not in the context of Lie algebra derivations).
- The element [A, B] is hence a diagonal operator and is Hermitian.

- ① Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.
- ② The generator B is represented by a unilateral weighted shift.
- The generator A performs the role of the adjoint of B, (adjoint in the Hilbert space sense, and not in the context of Lie algebra derivations).
- The element [A, B] is hence a diagonal operator and is Hermitian.
- **1** The ideal of all the compact operators in $\mathcal{H}(q)$ is precisely the derived (Lie) algebra of $\mathfrak{L}(q)$.

- ① Using a result from (Hellström and Silvestrov, 2005), $\mathcal{H}(q)$ is faithfully represented by Hilbert space operators on the sequence space $\ell_2(\mathbb{N})$.
- The generator A performs the role of the adjoint of B, (adjoint in the Hilbert space sense, and not in the context of Lie algebra derivations).
- The element [A, B] is hence a diagonal operator and is Hermitian.
- **1** The ideal of all the compact operators in $\mathcal{H}(q)$ is precisely the derived (Lie) algebra of $\mathfrak{L}(q)$.
- The resulting Calkin algebra is the complex Laurent polynomial algebra in one indeterminate.

The original setting for this type of Lie algebra problem

The Fairlie-Odesskii algebra:

 $U_q'(\mathfrak{so}_3):=$ the algebra with generators I_1,I_2,I_3 and relations

$$q^{\frac{1}{2}}I_{1}I_{2} - q^{-\frac{1}{2}}I_{2}I_{1} = I_{3},$$

$$q^{\frac{1}{2}}I_{2}I_{3} - q^{-\frac{1}{2}}I_{3}I_{2} = I_{1},$$

$$q^{\frac{1}{2}}I_{3}I_{1} - q^{-\frac{1}{2}}I_{1}I_{3} = I_{2}.$$

The original setting for this type of Lie algebra problem

The Fairlie-Odesskii algebra:

 $U_q'(\mathfrak{so}_3):=$ the algebra with generators $\mathit{I}_1,\mathit{I}_2,\mathit{I}_3$ and relations

$$q^{\frac{1}{2}}I_{1}I_{2} - q^{-\frac{1}{2}}I_{2}I_{1} = I_{3},$$

$$q^{\frac{1}{2}}I_{2}I_{3} - q^{-\frac{1}{2}}I_{3}I_{2} = I_{1},$$

$$q^{\frac{1}{2}}I_{3}I_{1} - q^{-\frac{1}{2}}I_{1}I_{3} = I_{2}.$$

The universal Askey-Wilson algebra:

some form of generalization encompasing $U_q'(\mathfrak{so}_3)$ and some other algebras introduced in (Terwilliger, 2011)

The original setting for this type of Lie algebra problem

The Fairlie-Odesskii algebra:

 $U_q'\left(\mathfrak{so}_3
ight):=$ the algebra with generators $\mathit{I}_1,\mathit{I}_2,\mathit{I}_3$ and relations

$$q^{\frac{1}{2}}I_{1}I_{2} - q^{-\frac{1}{2}}I_{2}I_{1} = I_{3},$$

$$q^{\frac{1}{2}}I_{2}I_{3} - q^{-\frac{1}{2}}I_{3}I_{2} = I_{1},$$

$$q^{\frac{1}{2}}I_{3}I_{1} - q^{-\frac{1}{2}}I_{1}I_{3} = I_{2}.$$

The universal Askey-Wilson algebra:

some form of generalization encompasing $U'_q(\mathfrak{so}_3)$ and some other algebras introduced in (Terwilliger, 2011)

:

(same type of Lie algebra problems for the above algebras)

References

- G. Bergman, The diamond lemma for ring theory, *Adv. Math.* **29** (1978) 178-218.
- R. Cantuba, A Lie algebra related to the universal Askey-Wilson algebra, Matimyás Matematika, **38** (2015) 51-75, available at http://mathsociety.ph/matimyas/images/vol38/Cantuba2.pdf.
- R. Cantuba, Lie polynomials in *q*-deformed Heisenberg algebras, preprint, arXiv 1709.02612.
- R. Cantuba, A *q*-deformed Heisenberg algebra as a normed space, preprint, arXiv:1805.02362.
- R. Carter, Lie algebras of finite and affine type, *Cambridge Studies in Advanced Mathematics*, Vol. 96, Cambridge University Press, Cambridge, 2005.

References

- M. Hall, A basis for free Lie rings and higher commutators in free groups. *Proc. Amer. Math. Soc.* **1** (1950) 575-581.
- L. Hellström, S. Silvestrov, Commuting elements in *q*-deformed Heisenberg algebras. *World Scientific*, 2000.
- L. Hellström, S. Silvestrov, Two-sided ideals in *q*-deformed Heisenberg algebras. *Expo. Math.* **23** (2005) 99-125.
- A. Hora, N. Obata, Quantum probability and spectral analysis of graphs, *Springer-Verlag*, 2007.
- C. Reutenauer, Free Lie algebras, Oxford Univ. Press, New York, 1993.

References

- Shirshov, A., Subalgebras of free Lie algebras, *Mat. Sbornik N.S.*, **33** (1953) 441452.
- Shirshov, A., On free Lie rings, *Mat. Sbornik N.S.*, **45** (1958) 113-122.
- P. Terwilliger, The universal Askey-Wilson algebra, *SIGMA* **7** (2011) 069, 24 pages, arXiv:1104.2813.
- V. Ufnarovskij, Combinatorial and asymptotic methods in algebra, *Encyclopedia of Mathematical Sciences*, Vol. 57, Springer, 1995.

Thank you for your attention!!!