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Why noncommutative minimal surfaces?

The classical theory of minimal surfaces is an old and rich subject, and still
quite active.

From a mathematical point of view, it is interesting to investigate if one
can develop a parallel theory in noncommutative geometry.

As I will show, we can construct many explicit examples of minimal
surfaces that can be turned into noncommutative ones. In this way, one
can provide a multitude of examples of noncommutative surfaces.

Analogues of minimal surface equations appear as equations of motion in
physical models; e.g. in Membrane and String theory one finds that the
(operators corresponding to the) embedding coordinates have to be
“harmonic”.

There are other approaches to noncommutative minimal embeddings (e.g.
Dabrowski, Krajewski, Landi, Luef).
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Minimal surfaces in Euclidean space

Let Ω ⊆ R2 such that ~x : Ω→ Rn describes a surface Σ in Rn.
Classically, ~x : Ω→ Rn is called a minimal surface if it is a stationary point
of the area integral:

A[~x ] =

∫ √
gdudv

where g denotes the induced metric on Σ.This can be formulated as
demanding that the embedding coordinates x i are harmonic; i.e.

∆Σ(x i ) = 0 for i = 1, 2, . . . , n,

where ∆Σ denotes the Laplace-Beltrami operator on Σ. (There are of
course other characterizations.)
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Poisson algebraic formulation of geometry
Assume that Σ is a 2-dimensional manifold, with local coordinates
u = u1, v = u2, embedded in Rn via the embedding coordinates
x1(u, v), x2(u, v), . . . , xn(u, v), inducing on Σ the metric

gab = ∂a~x · ∂b~x ≡
n∑

i=1

(
∂ax

i
)(
∂bx

i
)

where ∂a = ∂
∂ua . Indices a, b, p, q take values in {1, 2}, and i , j , k , l run

from 1 to n.
For an arbitrary density ρ, one may introduce a Poisson bracket on C∞(Σ)
via

{f , h} =
2∑

a,b=1

1

ρ
εab
(
∂af
)(
∂bh
)
,

and we define the function γ =
√
g/ρ, where g denotes the determinant of

the metric gab.
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It turns out that one can formulate the Riemannian geometry of embedded
almost (para-)Kähler manifolds in terms of the Poisson algebra of the
manifold.

For instance, the Gaussian curvature of a surface embedded in Rn can be
computed as

K =
n∑

j ,k,l=1

1

γ4

(
1

2
{{x j , xk}, xk}{{x j , x l}, x l}

− 1

4
{{x j , xk}, x l}{{x j , xk}, x l}

)
.

where x1, . . . , xn denote the embedding coordinates.

Multilinear formulation of differential geometry and matrix regularizations
J. Diff. Geo. (J.A., J. Hoppe, G. Huisken, 2012)

Pseudo-Riemannian geometry in terms of multilinear brackets

Lett. Math. Phys. (J.A., G. Huisken, 2014)
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In this spirit, one can show that the Laplace-Beltrami operator on Σ can
be written in the following two forms

∆(f ) = γ−1
n∑

i=1

{γ−1{f , x i}, x i}

∆(f ) = γ−1{γ−1{f , ua}gab, ub}.

Note that, if γ =
√
g/ρ = 1 and f = x j one gets

∆(x j) =
n∑

i=1

{{x j , x i}, x i}.

On a surface, one may always find conformal coordinates; i.e., coordinates
with respect to which the metric becomes gab = E(u, v)δab for some
(strictly positive) function E . Furthermore, if we choose ρ = 1 (giving
γ = E), the formula above can be written as

∆(f ) =
1

E
{{f , ua}δab, ub} =

1

E
{{f , u}, u}+

1

E
{{f , v}, v}
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Minimal surfaces can be characterized by the fact that their embedding
coordinates x1, . . . , xn are harmonic with respect to the Laplace operator
on the surface; i.e. ∆(x i ) = 0 for i = 1, . . . , n. In local conformal
coordinates, due to the above Poisson algebraic formulas, one may
formulate this as follows:

A surface ~x : D ⊆ R2 → Rn is minimal if

∆0(x i ) = {{x i , u}, u}+ {{x i , v}, v} = 0 for i = 1, . . . , n

~xu · ~xu = ~xv · ~xv and ~xu · ~xv = 0

We also note that the above Poisson bracket satisfies {u, v} = 1. These
formulas make up our starting point when generalizing to noncommutative
algebras.

To avoid an excess of notation and concepts in this talk, I will give a very
basic presentation of the material. From an algebraic point of view, it can
be made a lot more sophisticated. However, that is not the point of my
talk today.
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The Weyl algebra

In the geometrical setting, we introduced a Poisson bracket with
{u, v} = 1. Therefore, we shall be interested in a (noncommutative) unital
algebra generated by two elements U,V satisfying

[U,V ] = i~1,

for some real number ~ > 0. The associative unital algebra generated by
U,V satisfying the above relation is commonly referred to as the Weyl
algebra.

The Weyl algebra satisfies the so called Ore condition, which implies that
it can be embedded in a field of fractions by a general procedure. By A~
we shall denote the Weyl algebra, and by F~ its field of fractions.

The Weyl algebra (and its field of fractions) can be equipped with a
∗-algebra structure by letting U∗ = U and V ∗ = V .
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Derivations
Let us introduce the derivations

∂̂u(A) ≡ ∂̂1(A) =
1

i~
[A,V ]

∂̂v (A) ≡ ∂̂2(A) = − 1

i~
[A,U],

from which it follows that ∂̂u
(
∂̂v (A)

)
= ∂̂v

(
∂̂u(A)

)
.

Compare with the geometric setting (with the choice ρ = 1), where it
holds that ∂f

∂u = {f , v} and ∂f
∂v = −{f , u}.

In analogy with complex analysis, we introduce

Λ = U + iV

∂(A) =
1

2

(
∂̂u(A)− i ∂̂v (A)

)
=

1

2~
[A,Λ∗]

∂̄(A) =
1

2

(
∂̂u(A) + i ∂̂v (A)

)
= − 1

2~
[A,Λ],

and it follows that ∂ and ∂̄ commute.
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Harmonic elements
Let us define the Laplace operator

∆0(A) = ∂̂2
u(A) + ∂̂2

v (A) = − 1

~2

[
[A,V ],V

]
− 1

~2

[
[A,U],U

]
,

in analogy with the classical expression

{{f , u}, u}+ {{f , v}, v}.

An element A ∈ F~ is called harmonic if ∆0(A) = 0.
It also holds that

∆0(A) = 4∂∂̄(A) = 4∂̄∂(A).

Moreover, we say that an element A ∈ F~ is holomorphic if ∂̄(A) = 0. We
also define ∫

A = B if ∂B = A.
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The noncommutative embedding
In analogy with the classical situation, where the embedding in Rn is given
by the embedding coordinates x1, . . . , xn, we will think of an element of
the free module (with basis e1, . . . , en)

X = eiX
i = e1X

1 + e2X
2 + ·+ enX

n ∈ Fn
~

for X 1, . . . ,X n ∈ F~, as representing a noncommutative embedding.

Moreover, for X ,Y ∈ Fn
~ one introduces the “Euclidean metric”

h(X ,Y ) =
n∑

i=1

(X i )∗Y i

and the derivations ∂̂1, ∂̂2 are extended to flat covariant derivatives

∂̂a(X ) = ei ∂̂a(X i )

for a = 1, 2.
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Noncommutative Minimal Surfaces

Let us recall the formulation of a minimal surface that we would like to
generalize to the noncommutative setting:

A surface ~x : D ⊆ R2 → Rn is minimal if

∆0(x i ) = {{x i , u}, u}+ {{x i , v}, v} = 0 for i = 1, . . . , n

~xu · ~xu = ~xv · ~xv and ~xu · ~xv = 0

Let us turn this into a very naive definition.
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Noncommutative Minimal Surfaces

Definition

An element X = eiX
i ∈ Fn

~ is called a noncommutative minimal surface if
(X i )∗ = X i and

∆0(X i ) = − 1

~2

[
[X i ,V ],V

]
− 1

~2

[
[X i ,U],U

]
= 0

E = G and ReF = 0,

for i = 1, 2, . . . , n, where

E = h
(
∂̂uX , ∂̂uX

)
G = h

(
∂̂vX , ∂̂vX

)
,

F = h
(
∂̂uX , ∂̂vX

)
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The noncommutative Weierstrass representation theorem
The classical Weierstrass theorem gives a representation formula for all
minimal surfaces in R3. It turns out that one can prove a nc analogue.

Theorem

Let X = eiX
i ∈ F3

~ be a minimal surface for which it holds that
∂(X 1 − iX 2) 6= 0. Then there exist holomorphic elements f , g ∈ F~
together with x i ∈ R (for i = 1, 2, 3), such that

X 1 = x11 + Re

∫
1

2
f (1− g2)dΛ

X 2 = x21 + Re

∫
i

2
f (1 + g2)dΛ

X 3 = x31 + Re

∫
fgdΛ.

(1)

Conversely, for any holomorphic f and g such that f (1− g2), f (1 + g2)
and fg are integrable, the above equations define a minimal surface.
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Algebraic minimal surfaces
For instance, for arbitrary polynomial F (Λ) the following defines a minimal
surface in A3

~:

X 1 = Re
(

(1− Λ2)∂2F (Λ) + 2Λ∂F (Λ)− 2F (Λ)
)

X 2 = Re
(
i(1 + Λ2)∂2F (Λ)− 2iΛ∂F (Λ) + 2iF (Λ)

)
X 3 = Re

(
2Λ∂2F (Λ)− 2∂F (Λ)

)
In other words, the above elements satisfy (for i = 1, 2, 3)[

[X i ,U],U
]

+
[
[X i ,V ],V

]
= 0.

The simplest case is the noncommutative Enneper surface:

X 1 = U + UV 2 − 1

3
U3 − i~V

X 2 = −V − U2V +
1

3
V 3 + i~U

X 3 = U2 − V 2.
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Double commutator equations

Recall that the Laplace operator can also be written as

∆(x i ) =
n∑

j=1

{{x i , x j}, x j}.

in another choice of coordinates (where ρ =
√
g). The corresponding

noncommutative equations for a minimal embedding

n∑
j=1

[
[X i ,X j ],X j

]
= 0

are well-known in physics. (String theory, Membrane theory, ...) From a
physical point of view it is important to find concrete solutions to these
equations; i.e. operators satisfying the above equations. However, it turns
out to be very hard to construct such solutions.
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Quantum Minimal Surfaces

J. Arnlind, J. Hoppe, M. Kontsevich. arXiv:1903.10792

In the previous work, we found many explicit solutions to another set of
“double-commutator” equations that, in the classical case, are related to
these by a change of coordinates. Hence, solutions of one set of equations
give rise to solutions of the other set of equations.

Is there an analogous way to construct solutions to

n∑
j=1

[
[X i ,X j ],X j

]
= 0

from solutions to [
[X i ,U],U

]
+
[
[X i ,V ],V

]
= 0?
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The answer in general is most likely “no”, but we managed to implement a
noncommutative coordinate change for certain operator representations to
construct, for instance, a solution related to the catenoid.

In short, one starts from a Fock-space representation of the operators
W = X 1 + iY 2 and X 3 with the Ansatz

W
∣∣n〉 = wn

∣∣n − 1〉 X 3
∣∣n〉 = zn

∣∣n〉
and derive coupled recursion relations for the coefficients {wn, zn}. With
some effort (and discovering connections to discrete integrable systems),
we were able to prove the existence of solutions to these recursion
relations, giving three operators X 1,X 2,X 3 satisfying

n∑
j=1

[
[X i ,X j ],X j

]
= 0.
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Thank you!
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