Twisted connections on projective modules

Kwalombota Ilwale

3rd Workshop of the Swedish Network for Algebra and Geometry, September 24, 2020

Introduction

In the paper
[AIL20] On q-deformed Levi-Civita connections.
J. Arnlind, K. Ilwale, G. Landi. arXiv:2005. 02603

Introduction

In the paper
[AIL20] On q-deformed Levi-Civita connections.
J. Arnlind, K. Ilwale, G. Landi. arXiv:2005. 02603
we started from certain (σ, τ)-derivations on the quantum 3-sphere $\mathcal{A}=S_{q}^{3}$, i.e. a linear maps $X: \mathcal{A} \rightarrow \mathcal{A}$ satisfying a Leibniz rule

$$
X(f g)=\sigma(f) X(g)+X(f) \tau(g)
$$

for $f, g \in \mathcal{A}$,

Introduction

In the paper
[AIL20] On q-deformed Levi-Civita connections.
J. Arnlind, K. Ilwale, G. Landi. arXiv:2005.02603
we started from certain (σ, τ)-derivations on the quantum 3 -sphere $\mathcal{A}=S_{q}^{3}$, i.e. a linear maps $X: \mathcal{A} \rightarrow \mathcal{A}$ satisfying a Leibniz rule

$$
X(f g)=\sigma(f) X(g)+X(f) \tau(g)
$$

for $f, g \in \mathcal{A}$, and introduced a (σ, τ)-connection ∇, fulfilling a corresponding twisted Leibniz rule

$$
\nabla_{X}(f m)=\sigma(f) \nabla_{X}(m)+X(f) \hat{\tau}(m)
$$

for $f \in \mathcal{A}$ and elements m in a (left) \mathcal{A}-module M, where $\hat{\tau}$ is an extension of τ to M (to be defined later).

Introduction

Moreover, we introduced corresponding concepts of metric compatibility and torsion-freeness of such a connection.

We proved that there exists a class of metric and torsion-free connections ("Levi-Civita connections") on the (standard) module of differential forms over S_{q}^{3}.
In this talk I will report on current work on extending these ideas to general algebras and (σ, τ)-derivations.

- Let \mathcal{A} be an associative algebra and $\sigma, \tau: \mathcal{A} \rightarrow \mathcal{A}$ be algebra endomorphisms.
- Let \mathcal{A} be an associative algebra and $\sigma, \tau: \mathcal{A} \rightarrow \mathcal{A}$ be algebra endomorphisms.
- A derivation is a linear map $X: \mathcal{A} \rightarrow \mathcal{A}$ satisfying the Leibniz rule

$$
X(f g)=f X(g)+X(f) g
$$

for $f, g \in \mathcal{A}$.

- Let \mathcal{A} be an associative algebra and $\sigma, \tau: \mathcal{A} \rightarrow \mathcal{A}$ be algebra endomorphisms.
- A derivation is a linear map $X: \mathcal{A} \rightarrow \mathcal{A}$ satisfying the Leibniz rule

$$
X(f g)=f X(g)+X(f) g
$$

for $f, g \in \mathcal{A}$.

- A (σ, τ)-derivation is a linear map $X: \mathcal{A} \rightarrow \mathcal{A}$ satisfying a Leibniz rule

$$
X(f g)=\sigma(f) X(g)+X(f) \tau(g)
$$

for $f, g \in \mathcal{A}$.

- Let \mathcal{A} be an associative algebra and $\sigma, \tau: \mathcal{A} \rightarrow \mathcal{A}$ be algebra endomorphisms.
- A derivation is a linear map $X: \mathcal{A} \rightarrow \mathcal{A}$ satisfying the Leibniz rule

$$
X(f g)=f X(g)+X(f) g
$$

for $f, g \in \mathcal{A}$.

- A (σ, τ)-derivation is a linear map $X: \mathcal{A} \rightarrow \mathcal{A}$ satisfying a Leibniz rule

$$
X(f g)=\sigma(f) X(g)+X(f) \tau(g)
$$

for $f, g \in \mathcal{A}$.

- A (σ, τ)-derivation can be regarded as a twisted derivation from which we can construct a twisted connection.
- In this work, we would like to generalise the work in [AIL20] by
- In this work, we would like to generalise the work in [AIL20] by
- introducing a linear map $X_{a}: \mathcal{A} \rightarrow \mathcal{A}$ satisfying the Leibniz rule

$$
X_{a}(f g)=\sigma_{a}(f) X_{a}(g)+X_{a}(f) \tau_{a}(g)
$$

for $f, g \in \mathcal{A}$, and $a \in I$.

- In this work, we would like to generalise the work in [AIL20] by
- introducing a linear map $X_{a}: \mathcal{A} \rightarrow \mathcal{A}$ satisfying the Leibniz rule

$$
X_{a}(f g)=\sigma_{a}(f) X_{a}(g)+X_{a}(f) \tau_{a}(g)
$$

for $f, g \in \mathcal{A}$, and $a \in I$.

- constructing a connection $\nabla_{X_{a}}: M \rightarrow M$ satisfying a Leibniz rule

$$
\nabla_{X_{a}}(f m)=\sigma_{a}(f) \nabla_{X_{a}}(m)+X_{a}(f) \hat{\tau}_{a}(m)
$$

for $a \in I, f \in \mathcal{A}$ and $m \in M$ where $\sigma_{a}, \tau_{a},: \mathcal{A} \rightarrow \mathcal{A}$ are algebra endomorphisms and $\hat{\tau}_{a}: M \rightarrow M$ is a map such that

$$
\hat{\tau}_{a}(f m)=\tau_{a}(f) \hat{\tau}_{a}(m)
$$

- In this work, we would like to generalise the work in [AIL20] by
- introducing a linear map $X_{a}: \mathcal{A} \rightarrow \mathcal{A}$ satisfying the Leibniz rule

$$
X_{a}(f g)=\sigma_{a}(f) X_{a}(g)+X_{a}(f) \tau_{a}(g)
$$

for $f, g \in \mathcal{A}$, and $a \in I$.

- constructing a connection $\nabla_{X_{a}}: M \rightarrow M$ satisfying a Leibniz rule

$$
\nabla_{X_{a}}(f m)=\sigma_{a}(f) \nabla_{X_{a}}(m)+X_{a}(f) \hat{\tau}_{a}(m)
$$

for $a \in I, f \in \mathcal{A}$ and $m \in M$ where $\sigma_{a}, \tau_{a},: \mathcal{A} \rightarrow \mathcal{A}$ are algebra endomorphisms and $\hat{\tau}_{a}: M \rightarrow M$ is a map such that

$$
\hat{\tau}_{a}(f m)=\tau_{a}(f) \hat{\tau}_{a}(m)
$$

- Finally, we would like to call such a connection a (σ, τ)-connection and show that it exists on projective modules.
(σ, τ)-algebra
Definition 1
Let \mathcal{A} be an associative algebra and let σ and τ be endomorphisms of \mathcal{A}. $\mathrm{A} \mathbb{C}$ - linear map $X: \mathcal{A} \rightarrow \mathcal{A}$ is called a (σ, τ)-derivation if

$$
X(f g)=\sigma(f) X(g)+X(f) \tau(g)
$$

for every $f, g \in \mathcal{A}$.

(σ, τ)-algebra

Definition 1

Let \mathcal{A} be an associative algebra and let σ and τ be endomorphisms of \mathcal{A}. $\mathrm{C} \mathbb{C}$ - linear map $X: \mathcal{A} \rightarrow \mathcal{A}$ is called a (σ, τ)-derivation if

$$
X(f g)=\sigma(f) X(g)+X(f) \tau(g)
$$

for every $f, g \in \mathcal{A}$.
Definition 2
A (σ, τ)-algebra $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ is a pair where \mathcal{A} is an associative algebra (over \mathbb{C}) and X_{a} is a $\left(\sigma_{a}, \tau_{a}\right)$-derivation of \mathcal{A} for $a \in I$.
(σ, τ)-algebra
Definition 1
Let \mathcal{A} be an associative algebra and let σ and τ be endomorphisms of \mathcal{A}. $\mathrm{C} \mathbb{C}$ - linear map $X: \mathcal{A} \rightarrow \mathcal{A}$ is called a (σ, τ)-derivation if

$$
X(f g)=\sigma(f) X(g)+X(f) \tau(g)
$$

for every $f, g \in \mathcal{A}$.
Definition 2
A (σ, τ)-algebra $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ is a pair where \mathcal{A} is an associative algebra (over \mathbb{C}) and X_{a} is a $\left(\sigma_{a}, \tau_{a}\right)$-derivation of \mathcal{A} for $a \in I$.

Definition 3
For a (σ, τ)-algebra $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ we let

$$
T \Sigma \subseteq \operatorname{Hom}_{\mathbb{C}}(\mathcal{A}, \mathcal{A})
$$

be the vector space generated by $\left\{X_{a}\right\}_{a \in I}$. We call $T \Sigma$ the tangent space of Σ.

Σ-module

Definition 4

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ)-algebra. A left Σ-module $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a left \mathcal{A}-module M together with \mathbb{C}-linear maps $\hat{\sigma}_{a}, \hat{\tau}_{a}: M \rightarrow M$ such that

$$
\begin{array}{r}
\hat{\sigma}_{a}(f m)=\sigma_{a}(f) \hat{\sigma}_{a}(m) \\
\hat{\tau}_{a}(f m)=\tau_{a}(f) \hat{\tau}_{a}(m)
\end{array}
$$

for $f \in \mathcal{A}, m \in M$ and $a \in I$.

Σ-module

Definition 4

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ)-algebra. A left Σ-module $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a left \mathcal{A}-module M together with \mathbb{C}-linear maps $\hat{\sigma}_{a}, \hat{\tau}_{a}: M \rightarrow M$ such that

$$
\begin{array}{r}
\hat{\sigma}_{a}(f m)=\sigma_{a}(f) \hat{\sigma}_{a}(m) \\
\hat{\tau}_{a}(f m)=\tau_{a}(f) \hat{\tau}_{a}(m)
\end{array}
$$

for $f \in \mathcal{A}, m \in M$ and $a \in I$.

Definition 5

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ)-algebra and let $\left(M_{1},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ and $\left(M_{2},\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ be left \sum-modules. A (σ, τ)-module homomorphism is an \mathcal{A}-module homomorphism $\phi: M_{1} \rightarrow M_{2}$ such that

$$
\phi\left(\hat{\sigma}_{a}(m)\right)=\tilde{\sigma}_{a}(\phi(m)) \quad \phi\left(\hat{\tau}_{a}(m)\right)=\tilde{\tau}_{a}(\phi(m))
$$

for $m \in M_{1}$ and $a \in I$.

Example 6

Example 6

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ)-algebra and let \mathcal{A}^{n} be a free (left) \mathcal{A}-module with a basis e_{1}, \ldots, e_{n}.

Example 6

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ)-algebra and let \mathcal{A}^{n} be a free (left) \mathcal{A}-module with a basis e_{1}, \ldots, e_{n}. One can introduce a canonical Σ-module structure on \mathcal{A}^{n} by setting

$$
\hat{\sigma}_{a}^{0}(m)=\sigma_{a}\left(m^{i}\right) e_{i}, \quad \hat{\tau}_{a}^{0}(m)=\tau_{a}\left(m^{i}\right) e_{i}
$$

for $m=m^{i} e_{i} \in \mathcal{A}^{n}$.

Example 6

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ)-algebra and let \mathcal{A}^{n} be a free (left) \mathcal{A}-module with a basis e_{1}, \ldots, e_{n}. One can introduce a canonical Σ-module structure on \mathcal{A}^{n} by setting

$$
\hat{\sigma}_{a}^{0}(m)=\sigma_{a}\left(m^{i}\right) e_{i}, \quad \hat{\tau}_{a}^{0}(m)=\tau_{a}\left(m^{i}\right) e_{i}
$$

for $m=m^{i} e_{i} \in \mathcal{A}^{n}$.
One has

$$
\begin{aligned}
& \hat{\sigma}_{a}^{0}(f m)=\sigma_{a}\left(f m^{i}\right) e_{i}=\sigma_{a}(f) \sigma_{a}\left(m^{i}\right) e_{i}=\sigma_{a}(f) \hat{\sigma}_{a}^{0}(m) \\
& \hat{\tau}_{a}^{0}(f m)=\tau_{a}\left(f m^{i}\right) e_{i}=\tau_{a}(f) \tau_{a}\left(m^{i}\right) e_{i}=\tau_{a}(f) \hat{\tau}_{a}^{0}(m)
\end{aligned}
$$

showing that $\left(\mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}^{0}, \hat{\tau}_{a}^{0}\right)\right\}_{a \in I}\right)$ is a (left) Σ-module.

Proposition 7

Proposition 7

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a \sum-module and let $T: M \rightarrow M$ be a (left) module homomorphism.

Proposition 7

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a \sum-module and let $T: M \rightarrow M$ be a (left) module homomorphism. Then $\left(T(M),\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a (left) Σ-module where $\tilde{\sigma}_{a}=T \circ \hat{\sigma}_{a}$ and $\tilde{\tau}_{a}=T \circ \hat{\tau}_{a}$.

Proposition 7

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a \sum-module and let $T: M \rightarrow M$ be a (left) module homomorphism. Then $\left(T(M),\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a (left) Σ-module where $\tilde{\sigma}_{a}=T \circ \hat{\sigma}_{a}$ and $\tilde{\tau}_{a}=T \circ \hat{\tau}_{a}$.

Example 8

Proposition 7

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a \sum-module and let $T: M \rightarrow M$ be a (left) module homomorphism. Then $\left(T(M),\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a (left) Σ-module where $\tilde{\sigma}_{a}=T \circ \hat{\sigma}_{a}$ and $\tilde{\tau}_{a}=T \circ \hat{\tau}_{a}$.

Example 8

Let $p: \mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$ be a projection, implying that $p \mathcal{A}^{n}$ is a (left) projective \mathcal{A}-module.

Proposition 7

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a \sum-module and let $T: M \rightarrow M$ be a (left) module homomorphism. Then $\left(T(M),\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a (left) Σ-module where $\tilde{\sigma}_{a}=T \circ \hat{\sigma}_{a}$ and $\tilde{\tau}_{a}=T \circ \hat{\tau}_{a}$.

Example 8

Let $p: \mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$ be a projection, implying that $p \mathcal{A}^{n}$ is a (left) projective \mathcal{A}-module. Defining $\tilde{\sigma}_{a}, \tilde{\tau}_{a}: p \mathcal{A}^{n} \rightarrow p \mathcal{A}^{n}$ by $\tilde{\sigma}_{a}=p \circ \hat{\sigma}_{a}^{0}$ and $\tilde{\tau}_{a}=p \circ \hat{\tau}_{a}^{0}$ (restricted to $p \mathcal{A}^{n}$), where $\hat{\sigma}_{a}^{0}(m)=\sigma_{a}\left(m^{i}\right) e_{i}$, $\hat{\tau}_{a}^{0}(m)=\tau_{a}\left(m^{i}\right) e_{i}$,

Proposition 7

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a \sum-module and let $T: M \rightarrow M$ be a (left) module homomorphism. Then $\left(T(M),\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a (left) Σ-module where $\tilde{\sigma}_{a}=T \circ \hat{\sigma}_{a}$ and $\tilde{\tau}_{a}=T \circ \hat{\tau}_{a}$.

Example 8

Let $p: \mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$ be a projection, implying that $p \mathcal{A}^{n}$ is a (left) projective \mathcal{A}-module. Defining $\tilde{\sigma}_{a}, \tilde{\tau}_{a}: p \mathcal{A}^{n} \rightarrow p \mathcal{A}^{n}$ by $\tilde{\sigma}_{a}=p \circ \hat{\sigma}_{a}^{0}$ and $\tilde{\tau}_{a}=p \circ \hat{\tau}_{a}^{0}$ (restricted to $p \mathcal{A}^{n}$), where $\hat{\sigma}_{a}^{0}(m)=\sigma_{a}\left(m^{i}\right) e_{i}$, $\hat{\tau}_{a}^{0}(m)=\tau_{a}\left(m^{i}\right) e_{i}$, one finds that for $m \in M$ and $f \in \mathcal{A}$

$$
\begin{aligned}
& \tilde{\sigma}_{a}(f m)=p\left(\hat{\sigma}_{a}^{0}(f m)\right) \\
& \tilde{\tau}_{a}(f m)=p\left(\sigma_{a}^{0}(f) p\left(\hat{\sigma}_{a}^{0}(m)\right)\right)=\sigma_{a}(f) \tilde{\sigma}_{a}(m) \\
&=\tau_{a}(f) p\left(\hat{\tau}_{a}^{0}(m)\right)=\tau_{a}(f) \tilde{\tau}_{a}(m),
\end{aligned}
$$

showing that $\left(p \mathcal{A}^{n},\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a \sum-module.

Proposition 7

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a \sum-module and let $T: M \rightarrow M$ be a (left) module homomorphism. Then $\left(T(M),\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a (left) Σ-module where $\tilde{\sigma}_{a}=T \circ \hat{\sigma}_{a}$ and $\tilde{\tau}_{a}=T \circ \hat{\tau}_{a}$.

Example 8

Let $p: \mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$ be a projection, implying that $p \mathcal{A}^{n}$ is a (left) projective \mathcal{A}-module. Defining $\tilde{\sigma}_{a}, \tilde{\tau}_{a}: p \mathcal{A}^{n} \rightarrow p \mathcal{A}^{n}$ by $\tilde{\sigma}_{a}=p \circ \hat{\sigma}_{a}^{0}$ and $\tilde{\tau}_{a}=p \circ \hat{\tau}_{a}^{0}$ (restricted to $p \mathcal{A}^{n}$), where $\hat{\sigma}_{a}^{0}(m)=\sigma_{a}\left(m^{i}\right) e_{i}$, $\hat{\tau}_{a}^{0}(m)=\tau_{a}\left(m^{i}\right) e_{i}$, one finds that for $m \in M$ and $f \in \mathcal{A}$

$$
\begin{aligned}
& \tilde{\sigma}_{a}(f m)=p\left(\hat{\sigma}_{a}^{0}(f m)\right) \\
& \tilde{\tau}_{a}(f m)=p\left(\sigma_{a}^{0}(f) p\left(\hat{\sigma}_{a}^{0}(m)\right)\right)=\sigma_{a}(f) \tilde{\sigma}_{a}(m) \\
&=\tau_{a}(f) p\left(\hat{\tau}_{a}^{0}(m)\right)=\tau_{a}(f) \tilde{\tau}_{a}(m),
\end{aligned}
$$

showing that $\left(p \mathcal{A}^{n},\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a \sum-module. Hence, every projective \mathcal{A}-module can be endowed with the structure of a Σ-module.

Proposition 9

Proposition 9
Let $\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a \sum-module such that M is a projective \mathcal{A}-module.

Proposition 9

Let $\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a \sum-module such that M is a projective \mathcal{A}-module. Then there exists a projection $p: \mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$ and $\left\{\hat{\sigma}_{a}, \hat{\tau}_{a}\right\}$ such that

$$
\left(p \mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right) \simeq\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)
$$

and furthermore, $\left[\hat{\sigma}_{a}, p\right]=\left[\hat{\tau}_{a}, p\right]=0$.

Proof.

Proof.

Assume that M is finitely generated with generators e_{1}, \cdots, e_{n}.

Proof.

Assume that M is finitely generated with generators e_{1}, \cdots, e_{n}. Let $\phi: \mathcal{A}^{n} \rightarrow M$ be defined by $\phi\left(m^{i} \hat{e}_{i}\right)=m^{i} e_{i}$, then ϕ is surjective.

Proof.

Assume that M is finitely generated with generators e_{1}, \cdots, e_{n}. Let $\phi: \mathcal{A}^{n} \rightarrow M$ be defined by $\phi\left(m^{i} \hat{e}_{i}\right)=m^{i} e_{i}$, then ϕ is surjective. Since M is a projective module, there exists a homomorphism $\psi: M \rightarrow \mathcal{A}^{n}$ such that $\phi \circ \psi=\operatorname{ld}_{M}$.

Proof.

Assume that M is finitely generated with generators e_{1}, \cdots, e_{n}. Let $\phi: \mathcal{A}^{n} \rightarrow M$ be defined by $\phi\left(m^{i} \hat{e}_{i}\right)=m^{i} e_{i}$, then ϕ is surjective. Since M is a projective module, there exists a homomorphism $\psi: M \rightarrow \mathcal{A}^{n}$ such that $\phi \circ \psi=\operatorname{Id}_{M}$. Define $p: \mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$ by $p=\psi \circ \phi$. Then

$$
p^{2}=\psi \circ \phi \circ \psi \circ \phi=\psi \circ \phi=p,
$$

since $\phi \circ \psi=\operatorname{Id}_{M}$. This shows that p is a projection and $p \mathcal{A}^{n}$ is a projective module.

Proof.

Assume that M is finitely generated with generators e_{1}, \cdots, e_{n}. Let $\phi: \mathcal{A}^{n} \rightarrow M$ be defined by $\phi\left(m^{i} \hat{e}_{i}\right)=m^{i} e_{i}$, then ϕ is surjective. Since M is a projective module, there exists a homomorphism $\psi: M \rightarrow \mathcal{A}^{n}$ such that $\phi \circ \psi=\operatorname{Id}_{M}$. Define $p: \mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$ by $p=\psi \circ \phi$. Then

$$
p^{2}=\psi \circ \phi \circ \psi \circ \phi=\psi \circ \phi=p,
$$

since $\phi \circ \psi=\operatorname{Id}_{M}$. This shows that p is a projection and $p \mathcal{A}^{n}$ is a projective module. Let $\hat{\phi}=\left.\phi\right|_{p \mathcal{A}^{n}}: p \mathcal{A}^{n} \rightarrow M$ be the restriction of ϕ to $p \mathcal{A}^{n}$. One has

$$
p(\psi(m))=\psi \circ \phi \circ \psi(m)=\psi(m)
$$

showing that $\psi(m) \in p \mathcal{A}^{n}$ and $\hat{\phi}(\psi(m))=m$.

Proof.

This shows that $\psi=\hat{\phi}^{-1}$ and therefore $\hat{\phi}$ is an isomorphism.

Proof.

This shows that $\psi=\hat{\phi}^{-1}$ and therefore $\hat{\phi}$ is an isomorphism. Set $\hat{\sigma}_{a}=\psi \circ \tilde{\sigma}_{a} \circ \hat{\phi}$ and $\hat{\tau}_{a}=\psi \circ \tilde{\tau}_{a} \circ \hat{\phi}$. Then

$$
\begin{aligned}
& \hat{\sigma}_{a}(f m)=\psi\left(\tilde{\sigma}_{a}(\hat{\phi}(f m))\right)=\psi\left(\tilde{\sigma}_{a}(f \hat{\phi}(m))\right)=\psi\left(\sigma_{a}(f) \tilde{\sigma}_{a}(\hat{\phi}(m))\right) \\
& =\sigma_{a}(f) \psi\left(\tilde{\sigma}_{a}(\hat{\phi}(m))\right)=\sigma_{a}(f) \hat{\sigma}_{a}(m)
\end{aligned}
$$

Proof.

This shows that $\psi=\hat{\phi}^{-1}$ and therefore $\hat{\phi}$ is an isomorphism. Set $\hat{\sigma}_{a}=\psi \circ \tilde{\sigma}_{a} \circ \hat{\phi}$ and $\hat{\tau}_{a}=\psi \circ \tilde{\tau}_{a} \circ \hat{\phi}$. Then

$$
\begin{aligned}
& \hat{\sigma}_{a}(f m)=\psi\left(\tilde{\sigma}_{a}(\hat{\phi}(f m))\right)=\psi\left(\tilde{\sigma}_{a}(f \hat{\phi}(m))\right)=\psi\left(\sigma_{a}(f) \tilde{\sigma}_{a}(\hat{\phi}(m))\right) \\
& =\sigma_{a}(f) \psi\left(\tilde{\sigma}_{a}(\hat{\phi}(m))\right)=\sigma_{a}(f) \hat{\sigma}_{a}(m)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \hat{\tau}_{a}(f m)=\psi\left(\tilde{\tau}_{a}(\hat{\phi}(f m))\right)=\psi\left(\tilde{\tau}_{a}(f \hat{\phi}(m))\right)=\psi\left(\tau_{a}(f) \tilde{\tau}_{a}(\hat{\phi}(m))\right) \\
& =\tau_{a}(f) \psi\left(\tilde{\tau}_{a}(\hat{\phi}(m))\right)=\tau_{a}(f) \hat{\tau}_{a}(m)
\end{aligned}
$$

Proof.

This shows that $\psi=\hat{\phi}^{-1}$ and therefore $\hat{\phi}$ is an isomorphism. Set $\hat{\sigma}_{a}=\psi \circ \tilde{\sigma}_{a} \circ \hat{\phi}$ and $\hat{\tau}_{a}=\psi \circ \tilde{\tau}_{a} \circ \hat{\phi}$. Then

$$
\begin{aligned}
& \hat{\sigma}_{a}(f m)=\psi\left(\tilde{\sigma}_{a}(\hat{\phi}(f m))\right)=\psi\left(\tilde{\sigma}_{a}(f \hat{\phi}(m))\right)=\psi\left(\sigma_{a}(f) \tilde{\sigma}_{a}(\hat{\phi}(m))\right) \\
& =\sigma_{a}(f) \psi\left(\tilde{\sigma}_{a}(\hat{\phi}(m))\right)=\sigma_{a}(f) \hat{\sigma}_{a}(m)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \hat{\tau}_{a}(f m)=\psi\left(\tilde{\tau}_{a}(\hat{\phi}(f m))\right)=\psi\left(\tilde{\tau}_{a}(f \hat{\phi}(m))\right)=\psi\left(\tau_{a}(f) \tilde{\tau}_{a}(\hat{\phi}(m))\right) \\
& =\tau_{a}(f) \psi\left(\tilde{\tau}_{a}(\hat{\phi}(m))\right)=\tau_{a}(f) \hat{\tau}_{a}(m)
\end{aligned}
$$

This shows that $\left(p \mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a Σ-module.

Proof.

This shows that $\psi=\hat{\phi}^{-1}$ and therefore $\hat{\phi}$ is an isomorphism. Set $\hat{\sigma}_{a}=\psi \circ \tilde{\sigma}_{a} \circ \hat{\phi}$ and $\hat{\tau}_{a}=\psi \circ \tilde{\tau}_{a} \circ \hat{\phi}$. Then

$$
\begin{aligned}
& \hat{\sigma}_{a}(f m)=\psi\left(\tilde{\sigma}_{a}(\hat{\phi}(f m))\right)=\psi\left(\tilde{\sigma}_{a}(f \hat{\phi}(m))\right)=\psi\left(\sigma_{a}(f) \tilde{\sigma}_{a}(\hat{\phi}(m))\right) \\
& =\sigma_{a}(f) \psi\left(\tilde{\sigma}_{a}(\hat{\phi}(m))\right)=\sigma_{a}(f) \hat{\sigma}_{a}(m)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \hat{\tau}_{a}(f m)=\psi\left(\tilde{\tau}_{a}(\hat{\phi}(f m))\right)=\psi\left(\tilde{\tau}_{a}(f \hat{\phi}(m))\right)=\psi\left(\tau_{a}(f) \tilde{\tau}_{a}(\hat{\phi}(m))\right) \\
& =\tau_{a}(f) \psi\left(\tilde{\tau}_{a}(\hat{\phi}(m))\right)=\tau_{a}(f) \hat{\tau}_{a}(m)
\end{aligned}
$$

This shows that $\left(p \mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a \sum-module. In fact one has

$$
\begin{aligned}
& \hat{\phi} \circ \hat{\sigma}_{a}=\hat{\phi} \circ \psi \circ \tilde{\sigma}_{a} \circ \hat{\phi}=\tilde{\sigma}_{a} \circ \hat{\phi} \\
& \hat{\phi} \circ \hat{\tau}_{a}=\hat{\phi} \circ \psi \circ \tilde{\tau}_{a} \circ \hat{\phi}=\tilde{\tau}_{a} \circ \hat{\phi},
\end{aligned}
$$

showing that $\hat{\phi}$ is a (σ, τ) - isomorphism.

Proof.

Let $\psi(m) \in p \mathcal{A}^{n}$. Using $\hat{\phi} \circ \psi=\mathrm{id}$, one computes

$$
\hat{\sigma}_{a} \circ p=\psi \circ \tilde{\sigma}_{a} \circ \hat{\phi} \circ \psi \circ \hat{\phi}=\psi \circ \tilde{\sigma}_{a} \circ \hat{\phi} .
$$

and

$$
p \circ \hat{\sigma}_{a}=\psi \circ \hat{\phi} \circ \psi \circ \tilde{\sigma}_{a} \circ \hat{\phi}=\psi \circ \tilde{\sigma}_{a} \circ \psi
$$

giving $\left[\hat{\sigma}_{a}, p\right]=0$. In the similar way one can show that $\left[\hat{\tau}_{a}, p\right]=0$.

(σ, τ)-connection

Definition 10

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ)-algebra and let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a left Σ-module. A left (σ, τ)-connection on M is a $\operatorname{map} \nabla: T \Sigma \times M \rightarrow M$ satisfying

$$
\begin{aligned}
& \nabla_{X}\left(m+m^{\prime}\right)=\nabla_{X} m+\nabla_{X} m^{\prime} \\
& \nabla_{X}(\lambda m)=\lambda \nabla_{X} m \\
& \nabla_{X+Y} m=\nabla_{X} m+\nabla_{Y} m \\
& \nabla_{\lambda X} m=\lambda \nabla_{X} m \\
& \nabla_{X_{a}}(f m)=\sigma_{a}(f) \nabla_{X_{a}} m+X_{a}(f) \hat{\tau}_{a}(m)
\end{aligned}
$$

for all $X, Y \in T \Sigma, m, m^{\prime} \in M, \lambda \in \mathbb{C}$ and $a \in I$.

Example 11

Example 11

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ) - algebra and $\left(\mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a free left Σ-module.

Example 11

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ) - algebra and $\left(\mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a free left Σ-module. Introduce a map $\nabla: T \Sigma \times \mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$.
Choose $\nabla_{X} e_{i}$ arbitrarily and define

$$
\nabla_{X}\left(m^{i} e_{i}\right)=\sigma_{a}\left(m^{i}\right) \nabla_{X} e_{i}+X\left(m^{i}\right) \hat{\tau}_{a}\left(e_{i}\right)
$$

Example 11

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ) - algebra and $\left(\mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a free left Σ-module. Introduce a map $\nabla: T \Sigma \times \mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$.
Choose $\nabla_{X} e_{i}$ arbitrarily and define

$$
\nabla_{X}\left(m^{i} e_{i}\right)=\sigma_{a}\left(m^{i}\right) \nabla_{X} e_{i}+X\left(m^{i}\right) \hat{\tau}_{a}\left(e_{i}\right)
$$

For every $X, Y \in T \Sigma$, one can easily see that

$$
\begin{aligned}
& \nabla_{X}\left(m+m^{\prime}\right)=\nabla_{X}(m)+\nabla_{X}\left(m^{\prime}\right) \\
& \nabla_{X+Y}(m)=\nabla_{X}(m)+\nabla_{Y}(m)
\end{aligned}
$$

Example 11

Let $\Sigma=\left(\mathcal{A},\left\{X_{a}\right\}_{a \in I}\right)$ be a (σ, τ) - algebra and $\left(\mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a free left Σ-module. Introduce a map $\nabla: T \Sigma \times \mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$.
Choose $\nabla_{X} e_{i}$ arbitrarily and define

$$
\nabla_{X}\left(m^{i} e_{i}\right)=\sigma_{a}\left(m^{i}\right) \nabla_{X} e_{i}+X\left(m^{i}\right) \hat{\tau}_{a}\left(e_{i}\right)
$$

For every $X, Y \in T \Sigma$, one can easily see that

$$
\begin{aligned}
& \nabla_{X}\left(m+m^{\prime}\right)=\nabla_{X}(m)+\nabla_{X}\left(m^{\prime}\right) \\
& \nabla_{X+Y}(m)=\nabla_{X}(m)+\nabla_{Y}(m)
\end{aligned}
$$

For derivations $X_{a} \in T \Sigma$, one finds that

$$
\nabla_{X_{a}}(f m)=\sigma_{a}(f) \nabla_{X_{a}}(m)+X_{a}(f) \hat{\tau}_{a}(m)
$$

for $m, m^{\prime} \in \mathcal{A}^{n}$ and $f \in \mathcal{A}$.

Proposition 12

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a left Σ-module and let ∇ be a left (σ, τ)-connection on $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$. If $p: M \rightarrow M$ is a projection then $\tilde{\nabla}=p \circ \nabla$ is a left (σ, τ)-connection on $\left(p(M),\left\{\left(p \circ \hat{\sigma}_{a}, p \circ \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$.

Proposition 12

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a left Σ-module and let ∇ be a left (σ, τ)-connection on $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$. If $p: M \rightarrow M$ is a projection then $\tilde{\nabla}=p \circ \nabla$ is a left (σ, τ)-connection on $\left(p(M),\left\{\left(p \circ \hat{\sigma}_{a}, p \circ \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$.

Proof.

Proposition 12

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a left \sum-module and let ∇ be a left (σ, τ)-connection on $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$. If $p: M \rightarrow M$ is a projection then $\tilde{\nabla}=p \circ \nabla$ is a left (σ, τ)-connection on $\left(p(M),\left\{\left(p \circ \hat{\sigma}_{a}, p \circ \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$.

Proof.

By the first Proposition (7), $\left(p(M),\left\{\left(p \circ \hat{\sigma}_{a}, p \circ \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a Σ-module.

Proposition 12

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a left Σ-module and let ∇ be a left (σ, τ)-connection on $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$. If $p: M \rightarrow M$ is a projection then $\tilde{\nabla}=p \circ \nabla$ is a left (σ, τ)-connection on $\left(p(M),\left\{\left(p \circ \hat{\sigma}_{a}, p \circ \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$.

Proof.

By the first Proposition (7), $\left(p(M),\left\{\left(p \circ \hat{\sigma}_{a}, p \circ \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a Σ-module. Let $f \in A, m, m^{\prime} \in M, X_{a}, X, Y \in T \Sigma$ and define $\tilde{\nabla}=p \circ \nabla$.

Proposition 12

Let $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ be a left \sum-module and let ∇ be a left (σ, τ)-connection on $\left(M,\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$. If $p: M \rightarrow M$ is a projection then $\tilde{\nabla}=p \circ \nabla$ is a left (σ, τ)-connection on $\left(p(M),\left\{\left(p \circ \hat{\sigma}_{a}, p \circ \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$.

Proof.

By the first Proposition (7), $\left(p(M),\left\{\left(p \circ \hat{\sigma}_{a}, p \circ \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ is a Σ-module. Let $f \in A, m, m^{\prime} \in M, X_{a}, X, Y \in T \Sigma$ and define $\tilde{\nabla}=p \circ \nabla$. One has

$$
\begin{aligned}
\tilde{\nabla}_{X_{a}}(f m) & =p\left(\nabla_{X_{a}}(f m)\right) \\
& =p\left(\sigma_{a}(f) \nabla_{X_{a}} m\right)+p\left(X_{a}(f) \hat{\tau}_{a}(m)\right) \\
& =\sigma_{a}(f) p\left(\nabla_{X_{a}} m\right)+X_{a}(f) p\left(\hat{\tau}_{a}(m)\right) \\
& =\sigma_{a}(f) \tilde{\nabla}_{X_{a}} m+X_{a}(f) p \circ \hat{\tau}_{a}(m) .
\end{aligned}
$$

To show linearity of the connection on the projective module we have

$$
\begin{aligned}
\tilde{\nabla}_{X_{a}}\left(\lambda m+m^{\prime}\right) & =p\left(\lambda \nabla_{X_{a}}(m)\right)+p\left(\nabla_{X_{a}}\left(m^{\prime}\right)\right) \\
& =\lambda \tilde{\nabla}_{X_{a}}(m)+\tilde{\nabla}_{X_{a}}\left(m^{\prime}\right)
\end{aligned}
$$

To show linearity of the connection on the projective module we have

$$
\begin{aligned}
\tilde{\nabla}_{X_{a}}\left(\lambda m+m^{\prime}\right) & =p\left(\lambda \nabla_{X_{a}}(m)\right)+p\left(\nabla_{X_{a}}\left(m^{\prime}\right)\right) \\
& =\lambda \tilde{\nabla}_{X_{a}}(m)+\tilde{\nabla}_{X_{a}}\left(m^{\prime}\right) \\
\tilde{\nabla}_{\lambda X+Y}(m) & =\lambda p\left(\nabla_{X}(m)\right)+p\left(\nabla_{Y}(m)\right) \\
& =\lambda \tilde{\nabla}_{X} m+\tilde{\nabla}_{Y} m
\end{aligned}
$$

Theorem 13

Theorem 13
Every projective Σ module has a (σ, τ)-connection.

Theorem 13
Every projective Σ module has a (σ, τ)-connection.
Proof.

Theorem 13

Every projective Σ module has a (σ, τ)-connection.
Proof.
Let $\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}\right)\right\}_{a \in I}\right)$ be a Σ-module with M be a projective module.

Theorem 13

Every projective Σ module has a (σ, τ)-connection.
Proof.
Let $\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}\right)\right\}_{a \in I}\right)$ be a Σ-module with M be a projective module. By proposition (9), there exist a projection $p: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\left(p \mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right) \simeq\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)
$$

Theorem 13

Every projective Σ module has a (σ, τ)-connection.
Proof.
Let $\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}\right)\right\}_{a \in I}\right)$ be a Σ-module with M be a projective module. By proposition (9), there exist a projection $p: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\left(p \mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right) \simeq\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)
$$

$\tilde{V}^{\text {Let }} \nabla$ be a (σ, τ)-connection on $\left(\mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ and define $\tilde{\nabla}=p \circ \nabla$.

Theorem 13

Every projective Σ module has a (σ, τ)-connection.
Proof.
Let $\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}\right)\right\}_{a \in I}\right)$ be a Σ-module with M be a projective module. By proposition (9), there exist a projection $p: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\left(p \mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right) \simeq\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)
$$

Let ∇ be a (σ, τ)-connection on $\left(\mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ and define $\tilde{\nabla}=p \circ \nabla$. By proposition (12), $\tilde{\nabla}$ is a (σ, τ)-connection on $\left(p \mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$.

Theorem 13

Every projective Σ module has a (σ, τ)-connection.
Proof.
Let $\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}\right)\right\}_{a \in I}\right)$ be a Σ-module with M be a projective module. By proposition (9), there exist a projection $p: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\left(p \mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right) \simeq\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}_{a}\right)\right\}_{a \in I}\right)
$$

Let ∇ be a (σ, τ)-connection on $\left(\mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$ and define $\tilde{\nabla}=p \circ \nabla$. By proposition (12), $\tilde{\nabla}$ is a (σ, τ)-connection on $\left(p \mathcal{A}^{n},\left\{\left(\hat{\sigma}_{a}, \hat{\tau}_{a}\right)\right\}_{a \in I}\right)$. By the isomorphism, it is clear that the projective \sum-module $\left(M,\left\{\left(\tilde{\sigma}_{a}, \tilde{\tau}\right)\right\}_{a \in I}\right)$ has a (σ, τ)-connection.

outlook

We wouldlike to explore

- on (σ, τ)-bimodule connection on Σ-bimodule,

outlook

We wouldlike to explore

- on (σ, τ)-bimodule connection on Σ-bimodule,
- on (σ, τ)-metric connection on Σ-bimodule.

outlook

We wouldlike to explore

- on (σ, τ)-bimodule connection on Σ-bimodule,
- on (σ, τ)-metric connection on Σ-bimodule.
- the general case of torsion and curvature since we have shown in [AIL20] that a Levi-Civita connection exists on S_{q}^{3}.

Thank you very much for your attention.

