Prime nearly epsilon-strongly graded rings

Daniel Lännström

BTH

SNAG 2020

Based on joint work with: Johan Öinert (BTH), Stefan Wagner (BTH), Patrik Nystedt (HV)

Table of Contents

- Connell's Theorem and Passman's characterization of prime strongly graded rings
- 2 A characterization of prime nearly epsilon-strongly graded ring
- 3 Application to Leavitt path algebras

Prime rings

Definition

A non-commutative, non-unital ring is called *prime* if (0) is a prime ideal.

Example

- Commutative ring is prime if and only if ID;
- $R \times R$ is not prime;
- $M_n(R)$ is prime if R is prime.

The group ring

Definition

Let R be a unital ring and let G be a group. The group ring $R[G] := \bigoplus_{g \in G} R\delta_g$ is a unital ring with multiplication defined by linearly extending

$$\delta_{\rm g}\delta_{\rm h}=\delta_{\rm gh}$$

for all $g, h \in G$.

Connell's Theorem (1963)

The group ring R[G] is prime if and only if R is prime and G does not have any non-trivial finite normal subgroups.

Group graded rings (I)

Definition

Let G be a group and let S be a ring. A grading of S is a collection of additive subsets of S, $\{S_g\}_{g\in G}$, such that

$$S=\bigoplus_{g\in G}S_g,$$

and $S_g S_h \subseteq S_{gh}$ for all $g, h \in G$. The ring S is called a G-graded ring. The component S_e is a subring of S called the *principal component*.

Definition (Dade 1980, Năstăsescu-Oystaeyen, 1982)

A G-graded ring is called strongly G-graded if $S_g S_h = S_{gh}$ for all $g, h \in G$.

Group graded rings (II)

Example

The group ring R[G] is strongly G-graded with $S_g:=R\delta_g$.

Example

The R be a unital ring. An algebraic crossed product $R\star G:=\bigoplus_{g\in G}R\delta_g$ generalizes the group ring by slightly modifying the multiplication.

Example (Hazrat, Nystedt-Öinert)

The Leavitt path algebra $L_K(E)$ is \mathbb{Z} -graded but *not* strongly \mathbb{Z} -graded in general!

Prime strongly graded rings (I)

Let $S = \bigoplus_{g \in G} S_g$ be a unital strongly G-graded ring.

Definition (Passman, 1984)

G acts on the ideals of S_e by

$$I^g:=S_{g^{-1}}IS_g.$$

An ideal I of S_e is called G-invariant if $I^g = I$ for every $g \in G$.

Prime strongly graded rings (II)

Theorem (Passman 1984)

If S is a unital and strongly G-graded ring, then S is not prime if and only if there exist:

- (a) subgroups $N \triangleleft H \subseteq G$ with N finite,
- (b) an H-invariant ideal I of S_e with $I^gI=\{0\}$ for all $g\in G\setminus H$,
- (c) nonzero H-invariant ideals \tilde{A} and \tilde{B} of S_N with $\tilde{A}, \tilde{B} \subseteq IS_N$ and $\tilde{A}\tilde{B} = \{0\}$.

Remark

- Passman's characterization generalizes Connell's Theorem.
- We want: further generalization to nearly epsilon-strongly graded rings!

Table of Contents

- 1 Connell's Theorem and Passman's characterization of prime strongly graded rings
- 2 A characterization of prime nearly epsilon-strongly graded ring
- 3 Application to Leavitt path algebras

Nearly epsilon-strongly graded rings

Definition (Nystedt-Öinert, 2017)

Let S be a G-graded ring. Suppose that $S_g S_{g^{-1}}$ is an s-unital ideal of S_e for every $g \in G$, and,

$$S_g = S_g S_{g^{-1}} S_g \tag{1}$$

for every $g \in G$. Then S is called *nearly epsilon-strongly G-graded*.

Proposition

If S is an s-unital strongly G-graded, then S is nearly epsilon-strongly G-graded.

Proof.

Note that $S_{\sigma}S_{\sigma^{-1}}=S_{\varepsilon}$ for every $g\in G$ by the strongly graded property.

Nearly epsilon-strongly graded rings (II)

Example

- unital strongly G-graded rings. E.g. the group ring R[G].
- Leavitt path algebras (Nystedt-Öinert, 2017).
- Algebraic partial crossed products (Nystedt-Öinert-Pinedo, 2016)
- Corner skew Laurent polynomial rings (Lännström, 2019).

Our partial characterization

Theorem/WIP (Lännström, Nystedt, Öinert, Wagner, 2020)

Let S be a nearly epsilon-strongly G-graded ring. Suppose that either of these conditions are satisfied:

- $r.Ann_S(S_x) = 0$ for every $x \in Supp(S)$, or,
- *G* is an FC-group.

Then we have obtained sufficient and necessary conditions (a)-(c) for S to be prime (not included here).

Remark

- Conditions (a)-(c) are similar to Passman's.
- If S is unital strongly G-graded, then $r.Ann_S(S_x) = 0$ for every $x \in Supp(S)$.

Applications of our characterization

Remark

By applying our characterizing, we can determine when:

- R[G] is prime (i.e. Connell's Theorem), and when,
- Leavitt path algebras are prime (Abrams, Bell and Rangaswamy).

Corollary (Lännström, Nystedt, Öinert, Wagner, 2020)

The unital partial crossed product $R \star G$ is prime if R is prime and G is torsion-free.

Table of Contents

- 1 Connell's Theorem and Passman's characterization of prime strongly graded rings
- 2 A characterization of prime nearly epsilon-strongly graded ring
- Application to Leavitt path algebras

Leavitt path algebras

Introduced by Ara, Moreno and Pardo 2004 and by Abrams and Aranda Pino 2005.

Input to the construction:

- R be a unital ring (possibly non-commutative)
- 2 E be a directed graph. E.g.:

$$E: \bullet_{v_0} \xrightarrow{f_0} \bullet_{v_1} \xleftarrow{f_1} \bullet_{v_2} \xrightarrow{f_3} \bullet_{v_3}$$

The Leavitt path algebra $L_R(E)$ is a \mathbb{Z} -graded R-algebra.

Research questions/motif

Coefficients in a field (original construction), coefficients in a commutative unital ring (Tomforde, 2009), coefficients in a unital ring (Hazrat, 2013)

Research questions 1

How does algebraic properties of R effect the algebraic properties of $L_R(E)$?

Research question 2

Can we extend structural results about $L_K(E)$ to $L_R(E)$ where R is a general unital ring?

Leavitt path algebras: Examples I

Ex: Consider the LPA associated with

 $\alpha^* \gamma = f_1^* f_2^* f_0^* f_0 = f_1^* f_2^* r(f_0) = f_1^* f_2^*.$

$$E: \bullet_{v_0} \xrightarrow{f_0} \bullet_{v_1} \xrightarrow{f_1} \bullet_{v_2} \xrightarrow{f_3} \bullet_{v_3}$$

Elements in
$$L_R(E)$$
:

$$\alpha^* = \mathbf{f_1^* f_2^* f_0^*} \in L_R(E)$$

$$v_0 \in L_R(E)$$

$$\gamma = \mathbf{f_0} \in L_R(E)$$

Leavitt path algebras: Examples II

Example

 A_1 :

In this case, $L_R(A_1) \cong Rv \cong R$.

Example

In this case, $L_R(E_1)\cong_{\phi} R[x,x^{-1}]$ via the map defined by $\phi(v)=1_R, \phi(f)=x, \phi(f^*)=x^{-1}$.

Leavitt path algebras: Examples III

The previous graphs have all been finite, but we also allow infinite graphs!

Example

Infinitely many vertices:

$$E'$$
: \bullet_{v_1} \bullet_{v_2} \bullet_{v_3} \bullet_{v_4} \bullet_{v_5} \bullet_{v_6} \bullet_{v_7} \bullet_{v_8} \bullet_{v_9} $\bullet_{v_{10}}$.

In this case, $L_R(E') \cong \bigoplus_{i>0} Rv_i$.

Example

$$E'': \bullet_{v_1} \xrightarrow{(\infty)} \bullet_{v_2}$$

Prime Leavitt path algebras

Definition

A directed graph E satisfied Condition (MT-3) if for every pair u, v of vertices, there is some vertex w such that there are paths:

- $\mathbf{0}$ $u \rightarrow w$, and,
- $v \rightarrow w$.

Theorem (Abrams, Bell and Rangaswamy)

Let K be a field. The Leavitt path $L_K(E)$ is prime if and only if E satisfies Condition (MT-3).

Examples

Example

Let R be a unital ring.

$$A_2: \bullet_{\nu_1} \bullet_{\nu}$$

In this case, $L_R(A_2) \cong Rv_1 \oplus Rv_2 \cong R \times R$.

Remark

- A₂ does not satisfy (MT-3)
- Remember that $R \times R$ is never prime!

Examples

Example

Let R be a unital ring.

$$E_2$$
:

$$\bullet_{v_1} \longrightarrow \bullet_{v_2}$$

In this case, $L_R(E_2) \cong M_2(R)$.

Remark

- E₂ does satisfy (MT-3)
- Remember that $M_2(R)$ is prime if R is prime

Our extended characterization of prime Leavitt path algebras

Theorem (Lännström, Nystedt, Öinert, Wagner, 2020)

Let R be a unital ring. The Leavitt path $L_R(E)$ is prime if and only if R is prime and E satisfies Condition (MT-3).

Remark

Note that this extends the Abrams- Bell-Rangaswamy theorem to also include Leavitt path algebras over unital rings!

Thank you for your attention!