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Connell’'s Theorem and Passman'’s characterization of prime strongly graded rings

Prime rings

Definition
A non-commutative, non-unital ring is called prime if (0) is a prime ideal. J

@ Commutative ring is prime if and only if ID;

@ R x R is not prime;
@ M,(R) is prime if R is prime.
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Connell's Theorem and Passman’s characterization of prime strongly graded rings

The group ring

Definition
Let R be a unital ring and let G be a group. The group ring R[G] := @, R, is a
unital ring with multiplication defined by linearly extending

0g0h = Ogn

forall g,h € G.

Connell's Theorem (1963)

The group ring R[G] is prime if and only if R is prime and G does not have any
non-trivial finite normal subgroups.
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Connell's Theorem and Passman’s characterization of prime strongly graded rings

Group graded rings (1)

Definition
Let G be a group and let S be a ring. A grading of S is a collection of additive subsets
of S, {Sg}geq, such that

s=Ps..

geiG

and 5,5, C Sz, for all g, h € G. Thering S is called a G-graded ring.
The component S, is a subring of S called the principal component.

Definition (Dade 1980, Nastdsescu-Oystaeyen, 1982)
A G-graded ring is called strongly G-graded if 5,5, = Sgp, for all g, h € G.
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Connell's Theorem and Passman’s characterization of prime strongly graded rings

Group graded rings (II)

Example
The group ring R[G] is strongly G-graded with S, := R{,.

Example

The R be a unital ring. An algebraic crossed product R x G := @geG R, generalizes
the group ring by slightly modifying the multiplication.

Example (Hazrat, Nystedt-Oinert)
The Leavitt path algebra Lx(E) is Z-graded but not strongly Z-graded in general!
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Connell's Theorem and Passman’s characterization of prime strongly graded rings

Prime strongly graded rings (1)

Let S = @D, S¢ be a unital strongly G-graded ring.

Definition (Passman, 1984)

G acts on the ideals of S, by
I€ = 54-11S,.

An ideal I of S, is called G-invariant if |18 = | for every g € G.
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Connell's Theorem and Passman’s characterization of prime strongly graded rings

Prime strongly graded rings (I1)

Theorem (Passman 1984)

If S is a unital and strongly G-graded ring, then S is not prime if and only if there exist:

(a) subgroups N << H C G with N finite,
(b) an H-invariant ideal | of S, with 18] = {0} for all g € G\ H,
(c) nonzero H-invariant ideals A and B of Sy with A, B C ISy and AB = {0}.

Remark

@ Passman'’s characterization generalizes Connell’s Theorem.

@ We want: further generalization to nearly epsilon-strongly graded rings!
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A characterization of prime nearly epsilon-strongly graded ring

Nearly epsilon-strongly graded rings

Definition (Nystedt-Oinert, 2017)

Let S be a G-graded ring. Suppose that 5,5,-1 is an s-unital ideal of S, for every
g € G, and,

Sg = SzS; 1S, (1)
for every g € G. Then S is called nearly epsilon-strongly G-graded.

Proposition

If S is an s-unital strongly G-graded, then S is nearly epsilon-strongly G-graded.

Proof.
Note that S,5,1 = S for every g € G by the strongly graded property. O
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A characterization of prime nearly epsilon-strongly graded ring

Nearly epsilon-strongly graded rings (I1)

@ unital strongly G-graded rings. E.g. the group ring R[G].
o Leavitt path algebras (Nystedt-Oinert, 2017).
o Algebraic partial crossed products (Nystedt-Oinert-Pinedo, 2016)

@ Corner skew Laurent polynomial rings (Lannstrom, 2019).
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A characterization of prime nearly epsilon-strongly graded ring

Our partial characterization

Theorem /WIP (Lannstrém, Nystedt, Qinert, Wagner, 2020)

Let S be a nearly epsilon-strongly G-graded ring. Suppose that either of these
conditions are satisfied:

@ r.Anns(Sy) = 0 for every x € Supp(S), or
@ G is an FC-group.

Then we have obtained sufficient and necessary conditions (a)-(c) for S to be prime
(not included here).

Remark
e Conditions (a)-(c) are similar to Passman's.

e If S is unital strongly G-graded, then r.Anng(Ss) = 0 for every x € Supp(S).
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A characterization of prime nearly epsilon-strongly graded ring

Applications of our characterization

Remark
By applying our characterizing, we can determine when:
@ R[G] is prime (i.e. Connell's Theorem), and when,

@ Leavitt path algebras are prime (Abrams, Bell and Rangaswamy).

Corollary (Lannstrom, Nystedt, Oinert, Wagner, 2020)
The unital partial crossed product R x G is prime if R is prime and G is torsion-free.
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Application to Leavitt path algebras

Leavitt path algebras

Introduced by Ara, Moreno and Pardo 2004 and by Abrams and Aranda Pino 2005.

Input to the construction:
@ R be a unital ring (possibly non-commutative)
@ L be a directed graph. E.g.:
fi f3
.,

~ 7
f

e
. Vv v
0 fo 1

V3

The Leavitt path algebra Lg(£) is a Z-graded R-algebra.
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Application to Leavitt path algebras

Research questions/motif

Coefficients in a field (original construction), coefficients in a commutative unital ring
(Tomforde, 2009), coefficients in a unital ring (Hazrat, 2013)

Research questions 1

How does algebraic properties of R effect the algebraic properties of Lg(E)?

Research question 2

Can we extend structural results about Lk (E) to Lg(E) where R is a general unital ring?
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Application to Leavitt path algebras

Leavitt path algebras: Examples |

Ex: Consider the LPA associated with

fi f3

E . .VO f .Vl .V2

f

Elements in Lg(E):
ot = 7. f7 € La(E)
Vo € LR(E)

v =fo € Lr(E)

oy = REGH=FGr(R)=f
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Application to Leavitt path algebras

Leavitt path algebras: Examples Il

A; o,
In this case, Lg(A;) = Rv = R.

Bample
O

El . o,

In this case, Lr(E1) =4 R[x,x '] via the map defined by
P(v) = 1g, ¢(f) = x, o(f*) = x 1.

V.
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Application to Leavitt path algebras

Leavitt path algebras: Examples Il

The previous graphs have all been finite, but we also allow infinite graphs!

Infinitely many vertices:

’.
E':e, o, o, o, o o o oo o o

In this case, Lg(E') = P,. Rv;.

(o0)

E": o, —>e

V2
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Application to Leavitt path algebras

Prime Leavitt path algebras

Definition
A directed graph E satisfied Condition (MT-3) if for every pair u, v of vertices, there is
some vertex w such that there are paths:

Q@ uv— w, and,

Qv —w.

Theorem (Abrams, Bell and Rangaswamy)

Let K be a field. The Leavitt path Lx(E) is prime if and only if E satisfies Condition
(MT-3).
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Application to Leavitt path algebras

Examples

Let R be a unital ring.
A2 . o, ®,
In this case, Lg(A2) =2 Rvi @ Rva 2 R X R
Remark
@ A, does not satisfy (MT-3)
@ Remember that R x R is never prime!
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Application to Leavitt path algebras

Examples

Let R be a unital ring.

E: ——

In this case, Lg(E;) = Ma(R).

Remark
e E, does satisfy (MT-3)
@ Remember that M,(R) is prime if R is prime
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Application to Leavitt path algebras

Our extended characterization of prime Leavitt path algebras

Theorem (Lannstrom, Nystedt, Qinert, Wagner, 2020)

Let R be a unital ring. The Leavitt path Lr(E) is prime if and only if R is prime and
satisfies Condition (MT-3).

Remark

Note that this extends the Abrams- Bell-Rangaswamy theorem to also include Leavitt
path algebras over unital rings!
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Thank you for your attention!
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