Separability of object unital groupoid graded rings

Patrik Nystedt - University West

SNAG 2020

Joint work with...

- Hector Pinedo
- Juan Cala
(Universidad Industrial de Santander, Colombia)

Outline

- Separable field extensions
- Separable unital ring extensions
- Separability for strongly group graded rings
- Separable functors
- Separable nonunital ring extensions
- Separability for object unital strongly groupoid graded rings

Definition

(Galois, Weber 1893, Steinitz 1910)

An algebraic field extension L / K is called separable if for all $a \in L$ the minimal polynomial of a does not have any double roots in an algebraic closure of K.

Theorem A

If L / K is a finite field extension, then the following are equivalent:

- L / K is separable.
- $1 \in \operatorname{tr}(L)$.

Definition

Let L / K be a finite field extension of degree n. Given $f \in E n d_{K}(L)$ define $\operatorname{Tr}(f)$ as the diagonal sum of a matrix representation of f in $M_{n}(K)$. Given $a \in L$ define $\lambda_{a} \in \operatorname{End}_{K}(L)$ as the map

$$
\lambda_{a}(x)=a x
$$

for $x \in L$. Define the field trace map

$$
\operatorname{tr}: L \rightarrow K
$$

by

$$
\operatorname{tr}(a)=\operatorname{Tr}\left(\lambda_{a}\right)
$$

for $a \in L$.

Tensor products

(\mathbb{R}^{n} : Gibbs 1886, Abelian groups: Whitney 1938, Modules: Bourbaki 1948)

If

$$
L_{1} / K
$$

and

$$
L_{2} / K
$$

are field extensions, then

$$
L_{1} \otimes_{K} L_{2}
$$

is a commutative K-algebra which may not be a field. Hence, it may contain nilpotent elements.

Definition

(Köthe 1930)
If A is a commutative finite dimensional K-algebra, then the nilradical $\operatorname{Nil}(A)$ of A is the ideal of A consisting of the set of nilpotent elements of A.

Proposition

If A is a commutative finite dimensional K-algebra, then $\operatorname{Nil}(A)=\{0\} \Leftrightarrow A$ is a finite direct product of fields. In that case, A is a semisimple algebra and hence all left A-modules are projective.

Proposition

If L / K is a finite field extension, then the following are equivalent:

- L / K is separable.
- $\operatorname{Nil}\left(L \otimes_{K} L\right)=\{0\}$.
- L is projective as an $L \otimes_{K} L$-module (or equivalently as an L-bimodule).
- The multiplication map $m: L \otimes_{K} L \rightarrow L$ is split by some L-bimodule homomorphism $\delta: L \rightarrow L \otimes_{K} L$.
- There exists $e \in L \otimes_{K} L$ with $m(e)=1$ and $e l=l e$ for all $l \in L$ (choose $e=\delta(1)$ from above). Such an element e is called a separability idempotent.

Definition

(B commutative: Auslander-Goldman 1960, B noncommutative: Hirata-Sugano 1966)

Suppose that A / B is a ring extension of unital rings with the same 1 . Then A / B is called separable if either of the following equivalent conditions hold:

- A is projective as an $A \otimes_{B} A^{\text {Op }}$-module (or equivalently as an A-bimodule).
- The multiplication map $m: A \otimes_{B} A \rightarrow A$ is split by some A-bimodule homomorphism $\delta: A \rightarrow A \otimes_{B} A$.
- There exists $e \in A \otimes_{B} A$ with $m(e)=1$ and $e a=a e$ for all $a \in A$ (choose $e=\delta(1)$ above).

Examples

- Group ring $A=B[G]$ with B unital. Then A / B is separable if and only if G is finite and $|G|$ is invertible in B. In that case:

$$
e=|G|^{-1} \sum_{g \in G} g \otimes g^{-1} .
$$

- Matrix ring $A=M_{n}(B)$ with B unital. Then A / B is always separable with:

$$
e=\sum_{i=1}^{n} e_{i j} \otimes e_{j i}
$$

for any fixed j.

Definition

Let R be a ring and G a group with identity e. The ring R is said to be graded by G, or G-graded, if for all $g \in G$ there is an additive subgroup R_{g} of R such that:

- $R=\oplus_{g \in G} R_{g}$ as additive groups, and
- for all $g, h \in G$ the inclusion $R_{g} R_{h} \subseteq R_{g h}$ holds.

In that case R is said to be strongly graded by G if for all $g, h \in G$ the equality $R_{g} R_{h}=R_{g h}$ holds.

Theorem B

(Miyashita 1970, Nastasescu-Van Oystaeyen 1989)
If R is a unital strongly G-graded ring, then the following are equivalent:

- R / R_{e} is separable
- $1 \in \operatorname{tr}\left(Z\left(R_{e}\right)\right)$

Remark

Theorem B has been extended to epsilon-strongly group graded rings by \bullet, Oinert and Pinedo (2018).

Definition

Let R be a unital strongly G-graded ring. For all $g \in G$ take $n_{g} \in \mathbb{N}$ and $u_{g}^{(i)} \in R_{g}$ and $v_{g^{-1}}^{(i)} \in R_{g^{-1}}$, for $i=1, \ldots, n_{g}$, such that:

$$
1=\sum_{i=1}^{n_{g}} u_{g}^{(i)} v_{g^{-1}}^{(i)} \quad\left(1 \in R_{g} R_{g^{-1}}\right)
$$

For $g \in G$ define $\gamma_{g}: Z\left(R_{e}\right) \rightarrow Z\left(R_{e}\right)$ by:

$$
\gamma_{g}(x)=\sum_{i=1}^{n_{g}} u_{g}^{(i)} x v_{g^{-1}}^{(i)}
$$

for $x \in Z\left(R_{e}\right)$. If G is finite, then put:

$$
\operatorname{tr}(x)=\sum_{g \in G} \gamma_{g}(x)
$$

for $x \in Z\left(R_{e}\right)$.

Proposition

(B commutative: Hattori 1963,
B noncommutative: Hirata-Sugano 1966)

If A / B be a separable extension of unital rings, then every submodule of a left A-module which is a B direct summand is an A-direct summand (in other words, A / B is "semisimple").

Definition

Let A / B be a ring extension. We let:

$$
\varphi: B \rightarrow A
$$

denote the inclusion map. To φ we associate the restriction functor:

$$
\varphi_{*}: A-\mathbf{m o d} \rightarrow B-\mathbf{m o d}
$$

which to a left A-module associates its natural structure as a left B-module.

Definition

(Nastasescu-Van Oystaeyen 1989)
Let C and D be categories. A functor $F: C \rightarrow D$ is called separable if for all $M, N \in \mathrm{Ob}(C)$, there is $\psi_{M, N}: \operatorname{Hom}_{D}(F(M), F(N)) \rightarrow \operatorname{Hom}_{C}(M, N)$ with:

- $\psi_{M, M^{\prime}}(F(\alpha))=\alpha$
- $F(\beta) f=g F(\alpha) \Rightarrow \beta \psi_{M, N}(f)=\psi_{M^{\prime}, N^{\prime}}(g) \alpha$
for all $M, N, M^{\prime}, N^{\prime} \in \mathrm{ob}(C)$, all $\alpha \in \operatorname{Hom}_{C}\left(M, M^{\prime}\right)$, all $\beta \in \operatorname{Hom}_{C}\left(N, N^{\prime}\right)$, all $f \in \operatorname{Hom}_{D}(F(M), F(N))$ and all $g \in \operatorname{Hom}_{D}\left(F\left(N^{\prime}\right), F\left(M^{\prime}\right)\right)$.

Theorem C

(Nastasescu-Van Oystaeyen 1989)
If A / B is a ring extension of unital rings, then the following are equivalent:

- A / B is separable.
- The restriction functor $\varphi_{*}: A-\bmod \rightarrow B-\bmod$ is separable.

Remark

Suppose that A / B is a separable extension of unital rings. Let $\sum_{i \in I} x_{i} \otimes y_{i} \in A \otimes_{B} A$ be a separability idempotent for A / B. Define:

$$
\psi_{M, N}: \operatorname{Hom}_{B}(M, N) \rightarrow \operatorname{Hom}_{A}(M, N)
$$

by:

$$
\psi_{M, N}(f)(m)=\sum_{i \in I} x_{i} f\left(y_{i} m\right)
$$

for $f \in \operatorname{Hom}_{B}(M, N)$ and $m \in M$.

Proposition

(Nastasescu-Van Oystaeyen 1989)

Let $F: C \rightarrow D$ and $G: D \rightarrow E$ be functors.

- F and G separable $\Rightarrow G F$ separable.
- $G F$ separable $\Rightarrow F$ separable.

Suppose that F is separable:

- $f \in \operatorname{Hom}_{C}(M, N)$ and $F(f)$ has a left (or right, or two-sided) inverse in $D \Rightarrow f$ has a left (or right, or two-sided) inverse in C.
- F preserves epimorphisms (monomorphisms) \Rightarrow F reflects projective (injective) objects.

Definition

By a groupoid \mathcal{G} we mean a small category with the property that all morphisms are isomorphisms. Equivalently, it can be defined by saying that \mathcal{G} is a non-empty set equipped with a unary operation

$$
\mathcal{G} \ni \sigma \mapsto \sigma^{-1} \in \mathcal{G} \quad \text { (inversion) }
$$

and a partial binary operation

$$
\mathcal{G} \times \mathcal{G} \ni(\sigma, \tau) \mapsto \sigma \tau \in \mathcal{G} \quad \text { (composition) }
$$

such that $\forall \sigma, \tau, \rho \in \mathcal{G}$ the following four axioms hold:

- $\left(\sigma^{-1}\right)^{-1}=\sigma$
- if $\sigma \tau$ and $\tau \rho$ are defined, then $(\sigma \tau) \rho$ and $\sigma(\tau \rho)$ are defined and equal
- the domain $d(\sigma):=\sigma^{-1} \sigma$ is always defined and if $\sigma \tau$ is defined, then $d(\sigma) \tau=\tau$
- the range $r(\tau):=\tau \tau^{-1}$ is always defined and if $\sigma \tau$ is defined, then $\sigma r(\tau)=\sigma$.

Definition

Let \mathcal{G} be a groupoid.

- $\mathcal{G}_{0}:=d(\mathcal{G})=r(\mathcal{G})$ is called the unit space of \mathcal{G}
- $\mathcal{G}_{1}:=\mathcal{G}$
- $\mathcal{G}_{2}:=\{(\sigma, \tau) \in \mathcal{G} \times \mathcal{G} \mid \sigma \tau$ is defined $\}$

Definition

Suppose that R is a ring and that \mathcal{G} is a groupoid. We say that R is graded by \mathcal{G} if there for all $\sigma \in \mathcal{G}$ is an additive subgroup R_{σ} of R such that

$$
R=\oplus_{\sigma \in \mathcal{G}} R_{\sigma}
$$

and $\forall \sigma, \tau \in \mathcal{G}$

$$
\begin{aligned}
& R_{\sigma} R_{\tau} \subseteq R_{\sigma \tau} \quad \text { if } \quad(\sigma, \tau) \in \mathcal{G}_{2} \\
& R_{\sigma} R_{\tau}=\{0\} \quad \text { if } \quad(\sigma, \tau) \notin \mathcal{G}_{2} .
\end{aligned}
$$

In that case, if $\forall(\sigma, \tau) \in G_{2} \quad R_{\sigma} R_{\tau}=R_{\sigma \tau}$, then we say that R is strongly graded by \mathcal{G}.

Definition

If R is a ring which is graded by a groupoid \mathcal{G}, then we say that R is object unital if

- $\forall e \in \mathcal{G}_{0} \quad R_{e}$ is unital, and
- $\forall \sigma \in \mathcal{G} \quad \forall r \in R_{\sigma} \quad 1_{R_{r(\sigma)}} r=r 1_{R_{d(\sigma)}}=r$.

Remark

If R is a ring which is graded by a groupoid \mathcal{G}, and R is object unital, then R is a ring with enough idempotents (namely the $1_{R_{e}}$ for $e \in \mathcal{G}_{0}$).

Definition

Let \mathcal{G} be a groupoid and $e \in \mathcal{G}_{0}$. Define the group:

$$
\mathcal{G}(e)=\{\sigma \in \mathcal{G} \mid d(\sigma)=r(\sigma)=e\} .
$$

This is called the principal group at e. Suppose that R is a ring which is graded by \mathcal{G}. Let \mathcal{H} be a subgroupoid of \mathcal{G}. We put:

$$
R_{\mathcal{H}}=\oplus_{\sigma \in \mathcal{H}} R_{\sigma} .
$$

Then $R_{\mathcal{H}}$ is graded by \mathcal{H}. We also put:

$$
R_{0}=R_{\mathcal{G}_{0}} .
$$

Theorem D

(Cala, •, Pinedo 2020)

If \mathcal{G} is a groupoid and R is an object unital strongly \mathcal{G}-graded ring, then the following are equivalent:

- The functor $\varphi_{*}: R$ - Mod $\rightarrow R_{0}$-Mod, associated to the inclusion map $\varphi: R_{0} \rightarrow R$, is separable.
- R / R_{0} is separable.
- For all $e \in \mathcal{G}_{0}, R_{\mathcal{G}(e)} / R_{e}$ is separable.
- For all $e \in \mathcal{G}_{0}, \mathcal{G}(e)$ is finite and $1_{R_{e}} \in \operatorname{tr}_{e}\left(Z\left(R_{e}\right)\right)$.

Remark: Bagio and Pinedo (2017) have shown a version of Theorem D that holds for partial skew groupoid rings.

Definition

(Taylor 1982, Brzezinski 2002)
Suppose that A and B are (not necessarily unital) rings with $A \supseteq B$. Then A / B is called separable if the multiplication map:

$$
m: A \otimes_{B} A \rightarrow A
$$

is split by some A-bimodule homomorphism:

$$
\delta: A \rightarrow A \otimes_{B} A .
$$

Theorem E

(Cala, •, Pinedo 2020)
If A / B is an extension of rings with enough idempotents such that $\left\{e_{i}\right\}_{i \in I} \subseteq B$ is a complete set of idempotents for both A and B, then the following are equivalent:

- The functor $\varphi_{*}: A$-Mod $\rightarrow B$-Mod, associated to the inclusion map $\varphi: B \rightarrow A$, is separable
- A / B is separable.
- For all $i \in I$ there exists an element $x_{i} \in \sum_{j \in I} e_{i} A e_{j} \otimes_{B}$ $e_{j} A e_{i}$ such that for all $j \in I$ and all $a \in e_{i} A e_{j}$, the equalities $\mu\left(x_{i}\right)=e_{i}$ and $x_{i} a=a x_{j}$ hold.

Questions

- Can we generalize Theorem D to epsilon-strongly groupoid graded rings?
- What is the connection between Theorem D (or at least Theorem B) and Theorem A?

Thank you!

