When is a group ring a Köthe ring?

Johan Öinert

BTH

The 3rd SNAG meeting, Online (Zoom), September 2020

Acknowledgement

This talk is based on an ongoing joint work with Samaneh Baghdari (Isfahan University of Technology).

Outline

- 💶 Background
- ② Group rings
- Our results
 - Some observations
 - Local coefficient rings
 - Going global

- 🕕 Background
- 2 Group rings
- Our results
 - Some observations
 - Local coefficient rings
 - Going global

"The basis theorem" from Linear Algebra

Theorem

Every (non-zero) vector space has a basis. (Using the axiom of choice.)

Remark

Fix a field \mathbb{F} . Let V be **any** vector space over \mathbb{F} .

Then

$$V = \bigoplus_{i \in I} \mathbb{F}e_i$$

with I possibly infinite.

- $\mathbb{F}e_i$ is a *cyclic* \mathbb{F} -module, for every $i \in I$.
- Conclusion: V is a direct sum of cyclic modules!

Question

Let us replace \mathbb{F} with a unital ring and consider modules over that ring. Could we have the above properties for those modules?

Köthe rings

Definition

- A unital ring S is said to be a *left (resp. right) Köthe ring* if every left (resp. right) S-module is a direct sum of cyclic modules.
- ullet If S is both a left and a right Köthe ring, then S is simply called a Köthe ring.

Definition

A unital ring S is said to be an artinian principal ideal ring if it is

- ullet left artinian (i.e. S satisfies the DCC on left ideals),
- ullet right artinian (i.e. S satisfies the DCC on right ideals),
- a principal left ideal ring (i.e. whenever I is a left ideal of S, we have I=Sx for some $x\in S$),
- and a principal right ideal ring (i.e. whenever I is a right ideal of S, we have I = yS for some $y \in S$).

Köthe rings, continued

Theorem (Köthe, 1935)

Let S be a unital ring. If S is a left (resp. right) artinian principal ideal ring, then S is a left (resp. right) Köthe ring.

Theorem (Cohen & Kaplansky, 1951)

Let S be a unital commutative ring. Then S is a Köthe ring if and only if S is an artinian principal ideal ring.

Theorem (Faith & Walker, 1967)

Let S be a unital ring. If S is a left (resp. right) Köthe ring, then S is a left (resp. right) artinian ring.

Example (Nakayama, 1940)

There is a Köthe ring which is not a principal ideal ring.

- Background
- ② Group rings
- Our results
 - Some observations
 - Local coefficient rings
 - Going global

The group ring R[G]

- ullet Ingredients: a unital ring R and a group G
- R[G] is a free left (and right) R-module with G as its basis; Every element is of the form $r_1g_1 + r_2g_2 + \ldots + r_ng_n$.
- Multiplication is defined by

$$(r_1g_1)(r_2g_2) = (r_1r_2)(g_1g_2)$$

for $r_1, r_2 \in R$ and $g_1, g_2 \in G$.

Question

Given a ring R and a group G, when is the group ring R[G] a Köthe ring?

Artinianity of R[G]

Theorem (Connell, 1963)

Let R be a unital ring and let G be a group. The group ring R[G] is left (resp. right) artinian if and only if R is left (resp. right) artinian and G is finite.

Principal ideal group rings

Remark

- G is \mathcal{A} -by- \mathcal{B} (with \mathcal{A} , \mathcal{B} two classes of groups) if there exists a normal subgroup $N \unlhd G$, such that $N \in \mathcal{A}$ and $G/N \in \mathcal{B}$.
- A finite group G is a p-group if $|G| = p^k$ for some natural number k.
- A finite group G is a p'-group if |G| is relatively prime to p.

Theorem (Passman 1977, Dorsey 2007)

Let K be a division ring, let G be a finite group and consider the group ring K[G]. The following two assertions are equivalent:

- lacktriangledown K[G] is a principal ideal ring.

That is: $\exists N \leq G$ such that G/N is cyclic, (|N|, p) = 1 and $|G/N| = p^k$.

- Background
- ② Group rings
- Our results
 - Some observations
 - Local coefficient rings
 - Going global

Necessary conditions

Proposition (Baghdari & Öinert)

Let R be a unital ring and let G be a group. If the group ring R[G] is a left (resp. right) Köthe ring, then the following assertions hold:

- R is a left (resp. right) Köthe ring;
- G is a finite group;
- (R/I)[G] is a left (resp. right) Köthe ring for every proper ideal I of R;
- lacktriangleq R[G/N] is a left (resp. right) Köthe ring for every normal subgroup N of G;
- (R/I)[G/N] is a left (resp. right) Köthe ring for every proper ideal I of R and every normal subgroup N of G.

A result for non-commutative group rings

Theorem

Let R be a division ring with $\operatorname{char}(R)=0$ and let G be a group. The group ring R[G] is a Köthe ring if and only if G is a finite group.

Example

Consider R[G] with

- ullet $R=\mathbb{H}$, the quaternions, and
- ullet $G=S_3$, the symmetric group on 3 letters.

Then R[G] is a Köthe ring.

Two nice little lemmas

Lemma (Baghdari & Öinert)

Let R be a commutative unital ring and let n > 1 be an integer. The following statements are equivalent:

- $n \cdot 1_R$ is not invertible in R;
- there is a prime divisor q of n, and a proper ideal M of R such that R/M is an integral domain with $\operatorname{char}(R/M) = q$.

Lemma (Baghdari & Öinert)

Let (R, M) be a unital commutative local ring with char(R/M) = p. Then for n > 1 we have that $n \cdot 1_R$ is not invertible in R if and only if p divides n.

Local coefficient rings

Theorem (Baghdari & Öinert)

Let (R,M) be a unital commutative local ring and let G be an abelian group. The following two assertions are equivalent:

- ① The group ring R[G] is a Köthe ring;
- $\operatorname{char}(R/M) = 0$: The ring R is a Köthe ring and G is a finite group. If R is not a field, then $|G| \cdot 1_R \in U(R)$. $\operatorname{char}(R/M) = p > 0$: The ring R is a Köthe ring and G is a finite p'-by-cyclic p group. If R is not a field, then $|G| \cdot 1_R \in U(R)$.

Remark

(i) \Rightarrow (ii): $\operatorname{char}(R/M) = 0$ - quite easy! $\operatorname{char}(R/M) = p$ - needs a combination of results of Cohen & Kaplansky, Passman and Dorsey. (ii) \Rightarrow (i): R a field - works by combining results of Connell, Passman and Köthe. R not a field - more tricky! Through pure projective modules and a result of Girvan (1973).

The main result (so far!)

Remark

Let R be a commutative unital artinian ring. There is a unique positive integer n, and local commutative unital artinian rings R_1, \ldots, R_n such that $R \cong R_1 \times \ldots \times R_n$.

Theorem (Baghdari & Öinert)

Let R be a unital commutative ring and let G be an abelian group. The following two assertions are equivalent:

- ① The group ring R[G] is a Köthe ring.
- ① The ring R is Köthe, G is a finite group and G is p'-by-cyclic p, for every $p \in \pi = \{q \mid q = \operatorname{char}(R/M) \text{ for some } M \in \operatorname{Max}(R)\}$. Moreover, $|G| \cdot 1_{R_i} \in U(R_i)$ whenever R_i is a non-semiprimitive ring which appears in the decomposition of R.

The end

THANK YOU FOR YOUR ATTENTION!