Daniel Lännström

Linköping University

SNAG #5, Västerås

Based on joint work with: Johan Öinert

D. Lännström, J. Öinert. Graded von Neumann regularity of rings graded by semigroups. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry (2022) Graded von Neumann regularity of rings graded by semigroups $\bigsqcup_{}$ Introduction

Table of Contents

1 Introduction

2 von Neumann regular rings

3 Semigroups and groupoids

4 Graded von Neumann regularity redux

5 Applications

Graded von Neumann regularity of rings graded by semigroups $\hfill \hfill \hf$

A ring R will always be associative but not necessarily commutative or unital.

Graded von Neumann regularity of rings graded by semigroups $\hfill \hfill \hf$

A ring R will always be associated but not necessarily commutative or unital. We will consider R equipped by group, semigroup and groupoid gradings. Graded von Neumann regularity of rings graded by semigroups -von Neumann regular rings

Table of Contents

1 Introduction

2 von Neumann regular rings

3 Semigroups and groupoids

4 Graded von Neumann regularity redux

5 Applications

Von Neumann regular rings

Definition (Von Neumann, 1936)

A unital ring R is called *von Neumann regular* if for each $a \in R$ there is some $x \in R$ such that a = axa.

Generalizes to non-unital rings in an obvious manner.

Von Neumann regular rings

Definition (Von Neumann, 1936)

A unital ring R is called *von Neumann regular* if for each $a \in R$ there is some $x \in R$ such that a = axa.

Generalizes to non-unital rings in an obvious manner.

Definition

A ring *R* is called *s*-unital if $x \in Rx \cap xR$ for every $x \in R$.

Von Neumann regular rings

Definition (Von Neumann, 1936)

A unital ring R is called *von Neumann regular* if for each $a \in R$ there is some $x \in R$ such that a = axa.

Generalizes to non-unital rings in an obvious manner.

Definition

A ring *R* is called *s*-unital if $x \in Rx \cap xR$ for every $x \in R$.

Proposition

Let R be an s-unital ring. The following are equivalent:

- **1** *R* is von Neumann regular
- 2 every finitely generated left (right) ideal is generated by an idempotent

von Neumann regular rings

Group graded von Neumann regular rings

Definition

Let R be a ring and let G be a group. A G-grading of R is a collection of additive subgroups $\{R_g\}_{g\in G}$ such that $R = \bigoplus_{g\in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. Moreover, R_e is called the principal component.

Example

Let *R* be a unital ring and let *G* be a group. The group ring *R*[*G*] is the free module with basis elements $\{\delta_g \mid g \in G\}$. It becomes a unital ring with multiplication defined by $(a\delta_g)(b\delta_h) = ab\delta_{gh}$ for all $a, b \in R, g, h \in G$.

von Neumann regular rings

Group graded von Neumann regular rings

Definition

Let *R* be a ring and let *G* be a group. A *G*-grading of *R* is a collection of additive subgroups $\{R_g\}_{g\in G}$ such that $R = \bigoplus_{g\in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. Moreover, R_e is called *the principal component*.

Example

Let *R* be a unital ring and let *G* be a group. The group ring *R*[*G*] is the free module with basis elements $\{\delta_g \mid g \in G\}$. It becomes a unital ring with multiplication defined by $(a\delta_g)(b\delta_h) = ab\delta_{gh}$ for all $a, b \in R, g, h \in G$.

Definition (Năstăsescu, Oystaeyen, 1982)

Let $S = \bigoplus_{g \in G} S_g$ be a *G*-graded ring. If, for each $g \in G$ and every $a \in S_g$, there is some $x \in S$ such that a = axa, then *S* is called *graded von Neumann regular*.

7 / 30

Group graded von Neumann regular rings and strongly group graded rings

Definition

A G-grading
$$S = \bigoplus_{g \in G} S_g$$
 is called *strong* if $S_g S_h = S_{gh}$ for all $g, h \in G$.

Group graded von Neumann regular rings and strongly group graded rings

Definition

A G-grading
$$S = igoplus_{g \in G} S_g$$
 is called strong if $S_g S_h = S_{gh}$ for all $g, h \in G$.

Theorem (Năstăsescu, Oystaeyen, 1982)

Let $S = \bigoplus_{g \in G} S_g$ be a unital strongly *G*-graded ring. Then *S* is graded von Neumann regular if and only if S_e is von Neumann regular.

Group graded von Neumann regular rings and strongly group graded rings

Definition

A G-grading
$$S = \bigoplus_{g \in G} S_g$$
 is called strong if $S_g S_h = S_{gh}$ for all $g, h \in G$.

Theorem (Năstăsescu, Oystaeyen, 1982)

Let $S = \bigoplus_{g \in G} S_g$ be a unital strongly *G*-graded ring. Then *S* is graded von Neumann regular if and only if S_e is von Neumann regular.

Example

Let R be a von Neumann regular ring. Then the group ring R[G] and the Laurent polynomial ring $R[x, x^{-1}]$ are graded von Neumann regular.

von Neumann regular rings

Nearly epsilon-strongly group graded rings

Proposition

If R is an s-unital strongly G-graded ring, then $R_g R_{g^{-1}} = R_e$ is s-unital for every $g \in G$.

von Neumann regular rings

Nearly epsilon-strongly group graded rings

Proposition

If R is an s-unital strongly G-graded ring, then $R_g R_{g^{-1}} = R_e$ is s-unital for every $g \in G$.

Definition (Nystedt, Öinert, 2019)

Let G be a group and let R be a G-graded ring. If, for every $g \in G$ and $s \in R_g$ there exist some $\epsilon_g(s) \in R_g R_{g^{-1}}, \epsilon_g(s)' \in R_{g^{-1}} R_g$ such that $\epsilon_g(s)s = s = s\epsilon_g(s)'$, then R is called *nearly epsilon-strongly G-graded*.

von Neumann regular rings

Nearly epsilon-strongly group graded rings

Proposition

If R is an s-unital strongly G-graded ring, then $R_g R_{g^{-1}} = R_e$ is s-unital for every $g \in G$.

Definition (Nystedt, Öinert, 2019)

Let G be a group and let R be a G-graded ring. If, for every $g \in G$ and $s \in R_g$ there exist some $\epsilon_g(s) \in R_g R_{g^{-1}}, \epsilon_g(s)' \in R_{g^{-1}} R_g$ such that $\epsilon_g(s)s = s = s\epsilon_g(s)'$, then R is called *nearly epsilon-strongly G-graded*.

Remark

s-unital strongly G-graded \implies nearly epsilon-strongly G-graded

Graded von Neumann regular rings and nearly epsilon-strongly graded rings

Theorem (L., 2019)

Let G be a group and let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring. Then R is graded von Neumann regular if and only if R is nearly epsilon-strongly G-graded and R_e is von Neumann regular.

Graded von Neumann regular rings and nearly epsilon-strongly graded rings

Theorem (L., 2019)

Let G be a group and let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring. Then R is graded von Neumann regular if and only if R is nearly epsilon-strongly G-graded and R_e is von Neumann regular.

Main application:

Theorem (L., 2019)

Let R be a unital ring and let E be a directed graph. Then the Leavitt path algebra $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Semigroups and groupoids

Table of Contents

1 Introduction

2 von Neumann regular rings

3 Semigroups and groupoids

4 Graded von Neumann regularity redux

5 Applications

Semigroups and groupoids

Semigroups

Definition

Semigroups and groupoids

Semigroups

Definition

2
$$E(S) := \{s \in S \mid s^2 = s\}$$

Semigroups and groupoids

Semigroups

Definition

2
$$E(S) := \{s \in S \mid s^2 = s\}$$

3 For
$$s \in S$$
, put $Q(s) := \{x \in S \mid s = sxs\}$

Semigroups and groupoids

Semigroups

Definition

2
$$E(S) := \{s \in S \mid s^2 = s\}$$

3 For
$$s \in S$$
, put $Q(s) := \{x \in S \mid s = sxs\}$

4 For
$$s \in S$$
, put $V(s) := \{x \in S \mid s = sxs \text{ and } x = xsx\}$

-Semigroups and groupoids

Semigroups

Definition

1 A semigroup is a set S equipped with an associative binary operator \cdot

2
$$E(S) := \{s \in S \mid s^2 = s\}$$

3 For
$$s \in S$$
, put $Q(s) := \{x \in S \mid s = sxs\}$

4 For
$$s \in S$$
, put $V(s) := \{x \in S \mid s = sxs \text{ and } x = xsx\}$

Definition

A semigroup S is called *regular* if $Q(s) \neq \emptyset$ for every $s \in S$. Equivalently, $V(s) \neq \emptyset$ for every $s \in S$.

-Semigroups and groupoids

Inverse semigroups

Definition

A semigroup S is called an *inverse semigroup* if |V(s)| = 1 for every $s \in S$.

-Semigroups and groupoids

Inverse semigroups

Definition

A semigroup S is called an *inverse semigroup* if |V(s)| = 1 for every $s \in S$.

Example

Let A be a unital ring and consider the full matrix ring $M_n(A)$ for some arbitrary n > 0. For $i, j \in \{1, ..., n\}$, let $e_{i,j}$ denote the standard matrix unit. Note that $B_n := \{0\} \cup \{e_{i,j} | 1 \le i \le n, 1 \le j \le n\}$ is an inverse semigroup under matrix multiplication.

-Semigroups and groupoids

Semigroup graded rings

Definition

Let S be a semigroup and let R be a ring. A S-grading is a collection of additive subgroups $\{R_g\}_{g\in G}$ such that $R = \bigoplus_{g\in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$.

-Semigroups and groupoids

Semigroup graded rings

Definition

Let S be a semigroup and let R be a ring. A S-grading is a collection of additive subgroups $\{R_g\}_{g\in G}$ such that $R = \bigoplus_{g\in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$.

Example

Let A be a unital ring and let S be a semigroup. The semigroup ring A[S] is canonically S-graded by putting $(A[S])_s := A\delta_s$ for every $s \in S$.

-Semigroups and groupoids

Groupoids

Definition

A groupoid G is a small category where every morphism is invertible. Let $G^{(2)}$ denote the subset of $G \times G$ of composable morphims. (= group with partial operation)

-Semigroups and groupoids

Groupoids

Definition

A groupoid G is a small category where every morphism is invertible. Let $G^{(2)}$ denote the subset of $G \times G$ of composable morphims. (= group with partial operation)

Example

Given a topological space X. Consider the fundamental groupoid $\pi_1(X)$. The objects are the set X. The morphisms from point p to the point q are equivalent classes (wrt homotopy) of continous paths from p to q. The fundamental groups $\pi_1(X, x)$ are the vertex groups of $\pi_1(X)$.

-Semigroups and groupoids

Groupoid graded rings

Definition

Let G be a groupoid and let R be a ring. A G-grading of R is a collection of additive subgroups $\{R_g\}_{g\in G}$ such that $R = \bigoplus_{g\in G} R_g$ and

$$egin{aligned} R_{g}R_{h} &\subseteq egin{cases} R_{gh} & (g,h) \in G^{(2)} \ 0 & (g,h)
ot\in G^{2}(2) \end{aligned}$$

Semigroups and groupoids

Groupoid graded rings

Definition

Let G be a groupoid and let R be a ring. A G-grading of R is a collection of additive subgroups $\{R_g\}_{g\in G}$ such that $R = \bigoplus_{g\in G} R_g$ and

$$egin{aligned} & \mathsf{R}_{\mathsf{g}}\mathsf{R}_{\mathsf{h}} \subseteq egin{cases} & \mathsf{R}_{\mathsf{g}\mathsf{h}} & (\mathsf{g},\mathsf{h}) \in G^{(2)} \ & 0 & (\mathsf{g},\mathsf{h})
ot\in G^2(2) \end{aligned}$$

Example

Let A be a ring and let G be a groupoid. The groupoid ring A[G] is canonically G-graded by putting $(A[G])_g := A\delta_g$.

-Semigroups and groupoids

Partial skew groupoid rings

Partial skew groupoid rings generalize both partial group rings and groupoid rings.

Definition (Bagio-Flores-Paques, 2010)

Let G be a groupoid and let A be a unital ring. Consider a unital partial action α of G on A. The partial skew groupoid ring $A \star_{\alpha} G$ is the set of finite sums $\sum_{g \in G} a_g \delta_g$ with multiplication defined by

$$(a\delta_g)(b\delta_h) = egin{cases} a_g lpha_g (a_h 1_{g^{-1}}) \delta_{gh} & (g,h) \in G^{(2)} \ 0 & ext{otherwise} \end{cases}$$

-Semigroups and groupoids

Inverse semigroups from groupoids

We associate an inverse semigroup S(G) to the groupoid G in the following way. For all $g, h \in G$:

1 $S(G) := \{0\} \cup G$ **2** $g \star_{S(G)} h := gh \text{ if } (g, h) \in G^{(2)}$ **3** $g \star_{S(G)} h := 0 \text{ if } (g, h) \notin G^{(2)}$ **4** $g \star_{S(G)} 0 := 0$ **5** $0 \star_{S(G)} h := 0$ Graded von Neumann regularity of rings graded by semigroups Graded von Neumann regularity redux

Table of Contents

1 Introduction

2 von Neumann regular rings

3 Semigroups and groupoids

4 Graded von Neumann regularity redux

5 Applications

Graded von Neumann regularity redux

Graded von Neumann regularity redux

New definition:

Definition (L.-Öinert, 2022)

Let S be a semigroup. A S-graded ring R is said to be graded von Neumann regular if for all $s \in S, r \in R_s$ and $t \in V(s)$ there is some $y \in R_t$ such that r = ryr.

Graded von Neumann regularity redux

Graded von Neumann regularity redux

New definition:

Definition (L.-Öinert, 2022)

Let S be a semigroup. A S-graded ring R is said to be graded von Neumann regular if for all $s \in S, r \in R_s$ and $t \in V(s)$ there is some $y \in R_t$ such that r = ryr.

Remark

In the case when S is a group, this definition coincides with the one used by Nastasescu and van Oystaeyen (1982).

Graded von Neumann regularity redux

Nearly epsilon-strongly semigroup graded rings

Remark

Let S be a semigroup and let R be a S-graded ring.

- **1** For each $e \in E(S)$, R_e is a subring of R
- 2 For all $s \in S$ and $t \in V(s)$, R_s is a $R_{st} R_{ts}$ -bimodule
- **3** For all $s \in S$ and $t \in V(s)$, $R_s R_t$ is an ideal of R_{st} and $R_t R_s$ is an ideal of R_{ts} .

Graded von Neumann regularity redux

Nearly epsilon-strongly semigroup graded rings

Remark

Let S be a semigroup and let R be a S-graded ring.

1 For each
$$e \in E(S)$$
, R_e is a subring of R

2 For all $s \in S$ and $t \in V(s)$, R_s is a $R_{st} - R_{ts}$ -bimodule

3 For all $s \in S$ and $t \in V(s)$, $R_s R_t$ is an ideal of R_{st} and $R_t R_s$ is an ideal of R_{ts} .

Definition (L.-Öinert, 2022)

For all $s \in S$, $t \in V(s)$ and $r \in R_s$, there exist $\epsilon_{s,t}(r) \in R_s R_t$ and $\epsilon_{s,t}(r)' \in R_t R_s$ such that the equalities $\epsilon_{s,t}(r)r = r = r\epsilon_{s,t}(r)'$ hold.

Graded von Neumann regularity redux

Necessary condition

Lemma

Let R be an S-graded ring which is graded von Neumann regular. Then the following assertions hold:

- **1** R_e is von Neumann regular for every $e \in E(S)$.
- **2** *R* is nearly epsilon-strongly S-graded.

Graded von Neumann regularity redux

Necessary condition

Lemma

Let R be an S-graded ring which is graded von Neumann regular. Then the following assertions hold:

- **1** R_e is von Neumann regular for every $e \in E(S)$.
- **2** *R* is nearly epsilon-strongly S-graded.

Proof

(1): Take $e \in E(S)$ and $r \in R_e$. Using that $e = e^3$, by graded von Neumann regularity, we get that there is some $y \in R_e$ such that r = ryr.

Graded von Neumann regularity redux

Necessary condition

Lemma

Let R be an S-graded ring which is graded von Neumann regular. Then the following assertions hold:

- **1** R_e is von Neumann regular for every $e \in E(S)$.
- **2** *R* is nearly epsilon-strongly S-graded.

Proof

(1): Take $e \in E(S)$ and $r \in R_e$. Using that $e = e^3$, by graded von Neumann regularity, we get that there is some $y \in R_e$ such that r = ryr. (2): Take $s \in S, t \in V(s)$ and $r \in R_s$. Using that S is graded von Neumann regular, there is some $y \in R_t$ such that r = ryr. Put $\epsilon_{s,t}(r) := ry \in R_s R_t$ and $\epsilon_{s,t}(r)' := yr$.

Graded von Neumann regularity redux

Main result (I)

Lemma (L.-Öinert, 2022)

Let R be a nearly epsilon-strongly S-graded ring and suppose that R_e is von Neumann regular for every $e \in E(S)$. Then, for all $s \in S, t \in V(s)$ and $r \in R_s$, the left R_{ts} -ideal R_ts is generated by an idempotent.

Graded von Neumann regularity redux

Main result (I)

Lemma (L.-Öinert, 2022)

Let R be a nearly epsilon-strongly S-graded ring and suppose that R_e is von Neumann regular for every $e \in E(S)$. Then, for all $s \in S, t \in V(s)$ and $r \in R_s$, the left R_{ts} -ideal R_ts is generated by an idempotent.

Theorem (L.-Öinert, 2022)

Let S be a semigroup and let R be an S-graded ring. The following assertions are equivalent:

- **1** *R* is graded von Neumann regular
- **2** *R* is nearly epsilon-strongly S-graded and R_e is von Neumann regular for every $e \in E(e)$.

Main result (II)

Theorem (L.-Öinert, 2022)

Let S be an inverse semigroup and let R be an S-graded ring. The following assertions are equivalent:

- **1** R is graded von Neumann regular
- **2** For all $s \in S$ and $r \in R_s$ there exist $t \in V(s)$ and $y \in R_t$ such that r = ryr.
- **3** *R* is nearly epsilon-strongly S-graded and R_e is von Neumann regular for every $e \in E(e)$.

Graded von Neumann regularity of rings graded by semigroups $\bigsqcup_{}$ Applications

Table of Contents

1 Introduction

2 von Neumann regular rings

3 Semigroups and groupoids

4 Graded von Neumann regularity redux

5 Applications

Semigroup rings

Corollary (L.-Öinert, 2022)

Let S be a semigroup and let R be a strongly S-graded ring for which R_e is s-unital for every $e \in E(S)$. Then R is graded von Neumann regular if and only if R_e is von Neumann regular for every $e \in E(S)$.

Semigroup rings

Corollary (L.-Öinert, 2022)

Let S be a semigroup and let R be a strongly S-graded ring for which R_e is s-unital for every $e \in E(S)$. Then R is graded von Neumann regular if and only if R_e is von Neumann regular for every $e \in E(S)$.

Proposition (L.-Öinert, 2022)

Let A be an s-unital ring and let S be a semigroup containing at least one idempotent. Equip the semigroup ring A[S] with the canonical S-grading. Then A[S] is graded von Neumann regular if and only if A is von Neumann regular.

Matrix rings

Example

Let A be a unital ring and consider the full matrix ring $M_n(A)$ for some arbitrary n > 0. For $i, j \in \{1, ..., n\}$, let $e_{i,j}$ denote the standard matrix unit. Recall that $B_n := \{0\} \cup \{e_{i,j} | 1 \le i \le n, 1 \le j \le n\}$.

Matrix rings

Example

Let A be a unital ring and consider the full matrix ring $M_n(A)$ for some arbitrary n > 0. For $i, j \in \{1, ..., n\}$, let $e_{i,j}$ denote the standard matrix unit. Recall that $B_n := \{0\} \cup \{e_{i,j} | 1 \le i \le n, 1 \le j \le n\}$. Putting $(M_n(A))_0 := 0$ and $(M_n(A))_s := As$ for $s \in B_n \setminus \{0\}$ gives a B_n -grading of $M_n(A)$.

Matrix rings

Example

Let A be a unital ring and consider the full matrix ring $M_n(A)$ for some arbitrary n > 0. For $i, j \in \{1, ..., n\}$, let $e_{i,j}$ denote the standard matrix unit. Recall that $B_n := \{0\} \cup \{e_{i,j} | 1 \le i \le n, 1 \le j \le n\}$. Putting $(M_n(A))_0 := 0$ and $(M_n(A))_s := As$ for $s \in B_n \setminus \{0\}$ gives a B_n -grading of $M_n(A)$.

Example

Consider n = 3 and $M_3(A)$ with its B_3 -grading. Note that $B_3 = \{0, e_{1,1}, e_{2,2}, e_{3,3}, e_{1,2}, e_{1,3}, e_{2,1}, e_{2,3}, e_{3,1}, e_{3,2}\}$. We can check that the above B_3 -grading on $M_3(A)$ is epsilon-strong. Using our results, we conclude that $M_3(A)$ is graded von Neumann regular if and only if A is von Neumann regular.

Groupoid graded rings

Definition (Nystedt-Öinert-Pinedo, 2020)

Let G be a groupoid and let R be a G-graded ring. Then R is called *nearly* epsilon-strongly G-graded if for all $g \in G$ and $r \in R_g$ there exist $\epsilon_{g,g^{-1}}(r) \in R_g R_{g^{-1}}$ and $\epsilon_{g,g^{-1}}(r) \in R_{g^{-1}}R_g$ such that $\epsilon_{g,g^{-1}}(s)r = r = r\epsilon_{g,g^{-1}}(r)$.

Groupoid graded rings

Definition (Nystedt-Öinert-Pinedo, 2020)

Let G be a groupoid and let R be a G-graded ring. Then R is called *nearly* epsilon-strongly G-graded if for all $g \in G$ and $r \in R_g$ there exist $\epsilon_{g,g^{-1}}(r) \in R_g R_{g^{-1}}$ and $\epsilon_{g,g^{-1}}(r) \in R_{g^{-1}}R_g$ such that $\epsilon_{g,g^{-1}}(s)r = r = r\epsilon_{g,g^{-1}}(r)$.

Reduction:

Proposition (L.-Öinert, 2022)

Let G be a groupoid and let R be a G-graded ring. Simultaneously, consider R as an S(G)-graded ring, where S(G) is the semigroup associated with G. Then R is nearly epsilon-strongly G-graded if and only if R is nearly epsilon-strongly S(G)-graded.

Groupoid graded rings (II)

Theorem (L.-Öinert, 2022)

Let G be a groupd and let R be a G-graded ring. The following assertions are equal:

- **1** *R* is graded von Neumann regular;
- **2** For all $g \in G$ and $r \in R_g$ there exist $y \in R_{g^{-1}}$ such that r = ryr;
- **3** *R* is nearly epsilon-strongly *G*-graded and R_e is von Neumann regular for every $e \in ob(G)$.

Applications

Thank you for your attention!

・ロト・日本・モート ヨー うへの