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Context

This talk is serving as a preparation for Karl's talk.

Today, �ring� means �unital ring�.

1 denotes both an element of R+ and the identity element of a group.
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Paradoxicality in groups

The Banach-Tarski paradox (1924)

Recall: E(3), the group of Euclidean motions (rigid transformations) in 3
dimensions, contains a free group on two generators.

Johan Öinert (BTH) Paradoxicality in groups and rings 2023-03-28 5 / 22



Paradoxicality in groups

Paradoxical decompositions

Let G be a group.

De�nition

Two sets A,B ⊆ G are G-equidecomposable, written A ∼G B, if there are
a partition {A1, . . . , An} of A and elements g1, . . . , gn ∈ G such that
{g1A1, . . . , gnAn} is a partition of B.

De�nition

A subset X of G is said to be G-paradoxical if there are sets A,B ⊆ X
such that A ∩B = ∅ and A ∼G X ∼G B.

Lemma

A subset X of G is G-paradoxical if and only if there is a partition {A,B}
of X such that A ∼G X ∼G B.
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Paradoxicality in groups

Example: The free group on two generators, F2 = ⟨a, b⟩

De�ne W (x) := {all reduced words that start with the letter x}.
Note that F2 = {1}

⊔
W (a)

⊔
W (a−1)

⊔
W (b)

⊔
W (b−1).

F2 = W (a)
⊔
aW (a−1) = W (b)

⊔
bW (b−1)

Conclusion: F2 is F2-paradoxical.
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Paradoxicality in groups

Amenability

De�nition

A group G is amenable if there is a function µ : P(G) → [0, 1] with the
following three properties:

1 µ(A ∪B) = µ(A) + µ(B) for any sets A,B ⊆ G with A ∩B = ∅;
2 µ(gA) = µ(A) for any set A ⊆ G;
3 µ(G) = 1.

Remark

If G is amenable, then G is not G-paradoxical.
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Paradoxicality in groups

Examples of amenable groups: Finite groups

Example

Let G be a �nite group. De�ne µ : P(G) → [0, 1] by

µ(A) :=
|A|
|G|

.

Then
1 µ(A ∪B) = µ(A) + µ(B) for any sets A,B ⊆ G with A ∩B = ∅;
2 µ(gA) = µ(A) for any set A ⊆ G, and any g ∈ G;
3 µ(G) = 1.
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Paradoxicality in groups

More examples of amenable groups

Example (Amenable groups)

All abelian groups.

All solvable groups.

Finitely generated groups of subexponential growth.

Remark

A subgroup of an amenable group is amenable.

A quotient of an amenable group is amenable.

A group extension of an amenable group by an amenable group is
again amenable.

A direct limit of amenable groups is amenable.
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Paradoxicality in groups

The Følner condition (1955)

De�nition

Let G be a group. We say that G satis�es the Følner condition if, for any
�nite subset K of G and ϵ ∈ R+, there exists a �nite subset F of G such
that |KF | < (1 + ϵ)|F |.

Theorem (Følner, 1955)

Let G be a group. Then the following two statements are equivalent.

1 G is amenable.

2 G satis�es the Følner condition.
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Paradoxicality in groups

Supramenability

De�nition

Let G be a group and let X ⊆ G. We say that X is amenable with respect

to G if there is a function µ : P(G) → [0,∞) with the following three
properties:

1 µ(A ∪B) = µ(A) + µ(B) for any sets A,B ⊆ G with A ∩B = ∅;
2 µ(gA) = µ(A) for any set A ⊆ G, and any g ∈ G;
3 µ(X) = 1.

De�nition

A group G is supramenable if every nonempty subset of G is amenable with
respect to G.

Remark

Every supramenable group is amenable.
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Paradoxicality in groups

Examples of supramenable groups

Example (Supramenable groups)

All abelian groups.

Any group all of whose �nitely generated subgroups display a
subexponential rate of growth.

Every locally virtually nilpotent group.

Remark

The class of supramenable groups is closed under taking subgroups,
quotients and direct limits.
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Paradoxicality in groups

Tarski's theorem

Theorem (Tarski, 1929)

Let G be a group and X a subset of G. Then the following two statements

are equivalent.

1 X is G-paradoxical.

2 X is not amenable with respect to G.

Remark

A group G is amenable if and only if G is not G-paradoxical.

A group G is supramenable if and only if no nonempty subset of G is
G-paradoxical.
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Paradoxicality in groups

The Følner/Rosenblatt condition

De�nition (Rosenblatt, 1973)

Let G be a group. If X ⊆ G, then we say that G satis�es the Følner

condition with respect to X if, for any �nite subset K of G and ϵ ∈ R+,
there exists a �nite subset F of G such that |KF ∩X| < (1 + ϵ)|F ∩X|.

Theorem

Let G be a group and X a subset of G. Then the following two statements

are equivalent.

1 X is amenable with respect to G.

2 G satis�es the Følner condition with respect to X.
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Paradoxicality in rings

Vector spaces and free modules

Consider the R-vector space Rn and recall:

Any generating set for Rn has cardinality ≤ n.

Any linearly independent set in Rn has cardinality ≤ n.

Example

Let n,m be positive integers. Suppose that Rn ∼= Rm as vector spaces
(over R). Then, n = m.
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Paradoxicality in rings

Free modules

Example

Let R be a commutative ring. Suppose that Rn ∼= Rm as R-modules.
Then n = m.

De�nition (Invariant basis number)

A ring R is said to have IBN if whenever Rn ∼= Rm as R-modules, we must
have n = m.

De�nition (Unbounded generating number)

A ring R is said to have UGN if whenever there is an R-module
epimorphism Rn → Rm, we must have n ≥ m.

Remark (Left/right symmetry)

We do not need to distinguish left modules from right modules at this
point.
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Paradoxicality in rings

Matrix characterizations of IBN and UGN

Proposition

A ring R does not have UGN if and only if, for some integers n > k > 1,
there exist an n× k matrix A and a k × n matrix B (with coe�cients in

R) such that AB = In.

Proposition

A ring R does not have IBN if and only if, for some integers n > k > 1,
there exist an n× k matrix A and a k × n matrix B (with coe�cients in

R) such that AB = In and BA = Ik.

Remark

(a) If R has UGN, then R has IBN.
(b) If f : S → R is a ring morphism, and R has UGN (resp. IBN), then S
has UGN (resp. IBN).
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Paradoxicality in rings

Example: The Leavitt algebra R := L(1, 2)

Consider the following Leavitt algebra:

R := C⟨a, b, a∗, b∗|a∗b = 0, b∗a = 0, a∗a = 1, b∗b = 1, aa∗ + bb∗ = 1⟩

De�ne f : R → R2 by
f(r) := (ra, rb)

and g : R2 → R by
g(r1, r2) := r1a

∗ + r2b
∗.

Note that

(f ◦ g)(r1, r2) = f(g(r1, r2)) = f(r1a
∗ + r2b

∗) =
((r1a

∗ + r2b
∗)a, (r1a

∗ + r2b
∗)b) = (r1, r2), and

(g ◦ f)(r) = g(f(r)) = g(ra, rb) = raa∗ + rbb∗ = r.

Conclusion: R ∼= R2 as left R-modules.
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Paradoxicality in rings

BGN-rings

De�nition/Lemma

Let R be a ring and n ∈ Z+. Then the following four statements are
equivalent.

1 gn(R) = n, the so-called generating number of R.
2 The integer n is the smallest positive integer such that there is an

R-module epimorphism Rn → Rn+1.
3 The integer n is the smallest positive integer such that there is an

R-module epimorphism Rn → Rm for some integer m > n.
4 The integer n is the smallest positive integer such that there is an

R-module epimorphism Rn → Rm for every m ∈ Z+.
5 The integer n is the smallest positive integer such that every �nitely

generated R-module is a homomorphic image of Rn.
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Paradoxicality in rings

The end

THANK YOU FOR YOUR ATTENTION!
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