Paradoxicality in groups and rings

Johan Öinert

BTH

The 5th SNAG meeting, Västerås, 2023-03-28

- **•** This talk is serving as a preparation for Karl's talk.
- Today, "ring" means "unital ring".
- 1 denotes both an element of \mathbb{R}^+ and the identity element of a group.

[Outline](#page-2-0)

Outline

1 [Paradoxicality in groups](#page-3-0)

2 [Paradoxicality in rings](#page-15-0)

1 [Paradoxicality in groups](#page-3-0)

[Paradoxicality in groups](#page-3-0)

The Banach-Tarski paradox (1924)

Recall: $E(3)$, the group of Euclidean motions (rigid transformations) in 3 dimensions, contains a free group on two generators.

Paradoxical decompositions

Let G be a group.

Definition

Two sets $A, B \subseteq G$ are G-equidecomposable, written $A \sim_G B$, if there are a partition $\{A_1, \ldots, A_n\}$ of A and elements $q_1, \ldots, q_n \in G$ such that ${g_1A_1,\ldots,g_nA_n}$ is a partition of B.

Definition

A subset X of G is said to be G-paradoxical if there are sets $A, B \subseteq X$ such that $A \cap B = \emptyset$ and $A \sim_G X \sim_G B$.

Lemma

A subset X of G is G-paradoxical if and only if there is a partition $\{A, B\}$ of X such that $A \sim_G X \sim_G B$.

Example: The free group on two generators, $\mathbb{F}_2 = \langle a, b \rangle$

• Define $W(x) := \{$ all reduced words that start with the letter $x\}$.

- Note that $\mathbb{F}_2 = \{1\} \bigsqcup W(a) \bigsqcup W(a^{-1}) \bigsqcup W(b) \bigsqcup W(b^{-1}).$
- $\mathbb{F}_2 = W(a) \bigsqcup aW(a^{-1}) = W(b) \bigsqcup bW(b^{-1})$

Conclusion: \mathbb{F}_2 is \mathbb{F}_2 -paradoxical.

Amenability

Definition

A group G is *amenable* if there is a function $\mu : \mathcal{P}(G) \to [0,1]$ with the following three properties:

\n- $$
\mu(A \cup B) = \mu(A) + \mu(B)
$$
 for any sets $A, B \subseteq G$ with $A \cap B = \emptyset$;
\n- $\mu(gA) = \mu(A)$ for any set $A \subseteq G$;
\n

$$
\bullet \ \mu(G) = 1
$$

Remark

If G is amenable, then G is not G -paradoxical.

Examples of amenable groups: Finite groups

Example

Let G be a finite group. Define $\mu : \mathcal{P}(G) \to [0,1]$ by

$$
\mu(A) := \frac{|A|}{|G|}.
$$

Then

 $\bullet \mu(A \cup B) = \mu(A) + \mu(B)$ for any sets $A, B \subseteq G$ with $A \cap B = \emptyset$; $Q \mu(gA) = \mu(A)$ for any set $A \subseteq G$, and any $g \in G$; $\bullet \mu(G) = 1.$

More examples of amenable groups

Example (Amenable groups)

- All abelian groups.
- All solvable groups.
- Finitely generated groups of subexponential growth.

Remark

- A subgroup of an amenable group is amenable.
- A quotient of an amenable group is amenable.
- A group extension of an amenable group by an amenable group is again amenable.
- A direct limit of amenable groups is amenable.

The Følner condition (1955)

Definition

Let G be a group. We say that G satisfies the Følner condition if, for any finite subset K of G and $\epsilon \in \mathbb{R}^+$, there exists a finite subset F of G such that $|KF| < (1 + \epsilon)|F|$.

Theorem (Følner, 1955)

Let G be a group. Then the following two statements are equivalent.

- \bullet G is amenable.
- \bullet G satisfies the Følner condition.

Supramenability

Definition

Let G be a group and let $X \subseteq G$. We say that X is amenable with respect to G if there is a function $\mu : \mathcal{P}(G) \to [0,\infty)$ with the following three properties:

•
$$
\mu(A \cup B) = \mu(A) + \mu(B)
$$
 for any sets $A, B \subseteq G$ with $A \cap B = \emptyset$;

$$
\bullet \ \mu(gA) = \mu(A) \text{ for any set } A \subseteq G \text{, and any } g \in G;
$$

$$
\bullet \ \mu(X) = 1.
$$

Definition

A group G is supramenable if every nonempty subset of G is amenable with respect to G_\cdot

Remark

Every supramenable group is amenable.

Examples of supramenable groups

Example (Supramenable groups)

- All abelian groups.
- Any group all of whose finitely generated subgroups display a subexponential rate of growth.
- **•** Every locally virtually nilpotent group.

Remark

The class of supramenable groups is closed under taking subgroups, quotients and direct limits.

Tarski's theorem

Theorem (Tarski, 1929)

Let G be a group and X a subset of G. Then the following two statements are equivalent.

- $\bullet X$ is G-paradoxical.
- 2 X is not amenable with respect to G.

Remark

- \bullet A group G is amenable if and only if G is not G -paradoxical.
- \bullet A group G is supramenable if and only if no nonempty subset of G is G-paradoxical.

The Følner/Rosenblatt condition

Definition (Rosenblatt, 1973)

Let G be a group. If $X\subseteq G$, then we say that G satisfies the Følner condition with respect to X if, for any finite subset K of G and $\epsilon \in \mathbb{R}^+,$ there exists a finite subset F of G such that $|KF \cap X| < (1+\epsilon)|F \cap X|$.

Theorem

Let G be a group and X a subset of G. Then the following two statements are equivalent.

- \bullet X is amenable with respect to G.
- \bullet G satisfies the Følner condition with respect to X.

Vector spaces and free modules

Consider the \mathbb{R} -vector space \mathbb{R}^n and recall:

- Any generating set for \mathbb{R}^n has cardinality $\leq n.$
- Any linearly independent set in \mathbb{R}^n has cardinality $\leq n.$

Example

```
Let n,m be positive integers. Suppose that \mathbb{R}^n \cong \mathbb{R}^m as vector spaces
(over \mathbb R). Then, n=m.
```
Free modules

Example

Let R be a commutative ring. Suppose that $R^n \cong R^m$ as R-modules. Then $n=m$

Definition (Invariant basis number)

A ring R is said to have IBN if whenever $R^n \cong R^m$ as R -modules, we must have $n = m$.

Definition (Unbounded generating number)

A ring R is said to have UGN if whenever there is an R -module epimorphism $R^n \to R^m$, we must have $n \geq m$.

Remark (Left/right symmetry)

We do not need to distinguish left modules from right modules at this point.

Matrix characterizations of IBN and UGN

Proposition

A ring R does not have UGN if and only if, for some integers $n > k > 1$, there exist an $n \times k$ matrix A and a $k \times n$ matrix B (with coefficients in R) such that $AB = I_n$.

Proposition

A ring R does not have IBN if and only if, for some integers $n > k > 1$, there exist an $n \times k$ matrix A and a $k \times n$ matrix B (with coefficients in R) such that $AB = I_n$ and $BA = I_k$.

Remark

(a) If R has UGN, then R has IBN. (b) If $f: S \to R$ is a ring morphism, and R has UGN (resp. IBN), then S has UGN (resp. IBN).

Example: The Leavitt algebra $R := L(1,2)$

Consider the following Leavitt algebra:

 $R := \mathbb{C}\langle a, b, a^*, b^* | a^*b = 0, b^*a = 0, a^*a = 1, b^*b = 1, aa^* + bb^* = 1 \rangle$

Define $f: R \to R^2$ by

$$
f(r):=\left(ra,rb\right)
$$

and $q: R^2 \to R$ by

$$
g(r_1, r_2) := r_1 a^* + r_2 b^*.
$$

Note that

•
$$
(f \circ g)(r_1, r_2) = f(g(r_1, r_2)) = f(r_1a^* + r_2b^*) =
$$

\n $((r_1a^* + r_2b^*)a, (r_1a^* + r_2b^*)b) = (r_1, r_2),$ and

•
$$
(g \circ f)(r) = g(f(r)) = g(ra, rb) = raa^* + rbb^* = r
$$
.

Conclusion: $R \cong R^2$ as left R -modules.

BGN-rings

Definition/Lemma

Let R be a ring and $n\in\mathbb{Z}^{+}.$ Then the following four statements are equivalent.

- **1** $\operatorname{gn}(R) = n$, the so-called generating number of R.
- **2** The integer n is the smallest positive integer such that there is an R -module epimorphism $R^n\to R^{n+1}.$
- \bullet The integer n is the smallest positive integer such that there is an R-module epimorphism $R^n \to R^m$ for some integer $m > n$.
- \bullet The integer n is the smallest positive integer such that there is an R -module epimorphism $R^n\to R^m$ for every $m\in\mathbb{Z}^+$.
- \bullet The integer n is the smallest positive integer such that every finitely generated R -module is a homomorphic image of R^n .

[Paradoxicality in rings](#page-15-0)

The end

THANK YOU FOR YOUR ATTENTION!