Paradoxicality in groups and rings

Johan Öinert

BTH

The 5th SNAG meeting, Västerås, 2023-03-28

Context

- This talk is serving as a preparation for Karl's talk.
- Today, "ring" means "unital ring".
- ullet 1 denotes both an element of \mathbb{R}^+ and the identity element of a group.

Outline

Paradoxicality in groups

Paradoxicality in rings

Paradoxicality in groups

Paradoxicality in rings

The Banach-Tarski paradox (1924)

Recall: E(3), the group of Euclidean motions (rigid transformations) in 3 dimensions, contains a free group on two generators.

Paradoxical decompositions

Let G be a group.

Definition

Two sets $A,B\subseteq G$ are G-equidecomposable, written $A\sim_G B$, if there are a partition $\{A_1,\ldots,A_n\}$ of A and elements $g_1,\ldots,g_n\in G$ such that $\{g_1A_1,\ldots,g_nA_n\}$ is a partition of B.

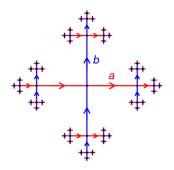
Definition

A subset X of G is said to be G-paradoxical if there are sets $A,B\subseteq X$ such that $A\cap B=\emptyset$ and $A\sim_G X\sim_G B$.

Lemma

A subset X of G is G-paradoxical if and only if there is a partition $\{A,B\}$ of X such that $A \sim_G X \sim_G B$.

Example: The free group on two generators, $\mathbb{F}_2 = \langle a, b \rangle$



- Define $W(x) := \{ \text{all reduced words that start with the letter } x \}.$
- Note that $\mathbb{F}_2 = \{1\} \bigsqcup W(a) \bigsqcup W(a^{-1}) \bigsqcup W(b) \bigsqcup W(b^{-1}).$
- $\mathbb{F}_2 = W(a) | |aW(a^{-1}) = W(b)| |bW(b^{-1})$

Conclusion: \mathbb{F}_2 is \mathbb{F}_2 -paradoxical.

Amenability

Definition

A group G is amenable if there is a function $\mu: \mathcal{P}(G) \to [0,1]$ with the following three properties:

- $\mu(gA) = \mu(A)$ for any set $A \subseteq G$;
- $\mu(G) = 1.$

Remark

If G is amenable, then G is not G-paradoxical.

Examples of amenable groups: Finite groups

Example

Let G be a finite group. Define $\mu:\mathcal{P}(G)\to[0,1]$ by

$$\mu(A) := \frac{|A|}{|G|}.$$

Then

- $\bullet \ \mu(A \cup B) = \mu(A) + \mu(B) \text{ for any sets } A, B \subseteq G \text{ with } A \cap B = \emptyset;$
- \bullet $\mu(gA) = \mu(A)$ for any set $A \subseteq G$, and any $g \in G$;
- **3** $\mu(G) = 1$.

More examples of amenable groups

Example (Amenable groups)

- All abelian groups.
- All solvable groups.
- Finitely generated groups of subexponential growth.

Remark

- A subgroup of an amenable group is amenable.
- A quotient of an amenable group is amenable.
- A group extension of an amenable group by an amenable group is again amenable.
- A direct limit of amenable groups is amenable.

The Følner condition (1955)

Definition

Let G be a group. We say that G satisfies the Følner condition if, for any finite subset K of G and $\epsilon \in \mathbb{R}^+$, there exists a finite subset F of G such that $|KF| < (1+\epsilon)|F|$.

Theorem (Følner, 1955)

Let G be a group. Then the following two statements are equivalent.

- G is amenable.
- G satisfies the Følner condition.

Supramenability

Definition

Let G be a group and let $X\subseteq G$. We say that X is amenable with respect to G if there is a function $\mu:\mathcal{P}(G)\to [0,\infty)$ with the following three properties:

- $\textbf{②} \ \ \mu(gA) = \mu(A) \ \text{for any set} \ A \subseteq G \text{, and any} \ g \in G;$
- **3** $\mu(X) = 1$.

Definition

A group G is supramenable if every nonempty subset of G is amenable with respect to G.

Remark

Every supramenable group is amenable.

Examples of supramenable groups

Example (Supramenable groups)

- All abelian groups.
- Any group all of whose finitely generated subgroups display a subexponential rate of growth.
- Every locally virtually nilpotent group.

Remark

The class of supramenable groups is closed under taking subgroups, quotients and direct limits.

Tarski's theorem

Theorem (Tarski, 1929)

Let G be a group and X a subset of G. Then the following two statements are equivalent.

- lacktriangledown X is G-paradoxical.
- 2 X is not amenable with respect to G.

Remark

- ullet A group G is amenable if and only if G is not G-paradoxical.
- ullet A group G is supramenable if and only if no nonempty subset of G is G-paradoxical.

The Følner/Rosenblatt condition

Definition (Rosenblatt, 1973)

Let G be a group. If $X \subseteq G$, then we say that G satisfies the Følner condition with respect to X if, for any finite subset K of G and $\epsilon \in \mathbb{R}^+$, there exists a finite subset F of G such that $|KF \cap X| < (1+\epsilon)|F \cap X|$.

Theorem

Let G be a group and X a subset of G. Then the following two statements are equivalent.

- lacktriangledown X is amenable with respect to G.
- $oldsymbol{Q}$ G satisfies the Følner condition with respect to X.

Paradoxicality in groups

Paradoxicality in rings

Vector spaces and free modules

Consider the \mathbb{R} -vector space \mathbb{R}^n and recall:

- Any generating set for \mathbb{R}^n has cardinality $\leq n$.
- Any linearly independent set in \mathbb{R}^n has cardinality $\leq n$.

Example

Let n,m be positive integers. Suppose that $\mathbb{R}^n\cong\mathbb{R}^m$ as vector spaces (over \mathbb{R}). Then, n=m.

Free modules

Example

Let R be a commutative ring. Suppose that $R^n \cong R^m$ as R-modules. Then n=m.

Definition (Invariant basis number)

A ring R is said to have $\ensuremath{\textit{IBN}}$ if whenever $R^n \cong R^m$ as R-modules, we must have n=m.

Definition (Unbounded generating number)

A ring R is said to have \red{UGN} if whenever there is an R-module epimorphism $R^n \to R^m$, we must have $n \ge m$.

Remark (Left/right symmetry)

We do not need to distinguish left modules from right modules at this point.

Matrix characterizations of IBN and UGN

Proposition

A ring R does not have UGN if and only if, for some integers n>k>1, there exist an $n\times k$ matrix A and a $k\times n$ matrix B (with coefficients in R) such that $AB=I_n$.

Proposition

A ring R does not have IBN if and only if, for some integers n > k > 1, there exist an $n \times k$ matrix A and a $k \times n$ matrix B (with coefficients in R) such that $AB = I_n$ and $BA = I_k$.

Remark

- (a) If R has UGN, then R has IBN.
- (b) If $f: S \to R$ is a ring morphism, and R has UGN (resp. IBN), then S has UGN (resp. IBN).

Example: The Leavitt algebra R := L(1,2)

Consider the following Leavitt algebra:

$$R := \mathbb{C}\langle a, b, a^*, b^* | a^*b = 0, b^*a = 0, a^*a = 1, b^*b = 1, aa^* + bb^* = 1 \rangle$$

Define $f:R\to R^2$ by

$$f(r) := (ra, rb)$$

and $g:R^2 o R$ by

$$g(r_1, r_2) := r_1 a^* + r_2 b^*.$$

Note that

- $(f\circ g)(r_1,r_2)=f(g(r_1,r_2))=f(r_1a^*+r_2b^*)=((r_1a^*+r_2b^*)a,(r_1a^*+r_2b^*)b)=(r_1,r_2),$ and
- $(g \circ f)(r) = g(f(r)) = g(ra, rb) = raa^* + rbb^* = r.$

Conclusion: $R \cong R^2$ as left R-modules.

BGN-rings

Definition/Lemma

Let R be a ring and $n \in \mathbb{Z}^+$. Then the following four statements are equivalent.

- \bullet gn(R) = n, the so-called generating number of R.
- ② The integer n is the smallest positive integer such that there is an R-module epimorphism $R^n \to R^{n+1}$.
- ① The integer n is the smallest positive integer such that there is an R-module epimorphism $R^n \to R^m$ for some integer m > n.
- ① The integer n is the smallest positive integer such that there is an R-module epimorphism $R^n \to R^m$ for every $m \in \mathbb{Z}^+$.
- **3** The integer n is the smallest positive integer such that every finitely generated R-module is a homomorphic image of R^n .

The end

THANK YOU FOR YOUR ATTENTION!