
Commutation relations for a class of
noncommutative spheres

Axel Tiger Norkvist

Department of Mathematics, Linköping University
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The first lore slide

My entire PhD project revolved around the noncommutative
geometry of structures called real calculi. A real calculus is a
structure CA = (A, g,M, φ), where

A is a unital ∗-algebra,

g is a real Lie algebra of hermitian derivations,

M is a (right) A-module, and

φ : g → M is a R-linear map such that φ(g) generates M.

To discuss geometry, we needed a notion of metric h. A metric (in
this framework) is defined as a hermitian form on M, with some
added invertibility conditions.
We can discuss the notion of Levi-Civita connections ∇ in the
framework.
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The second lore slide

One can construct a theory of isometric embeddings for real
calculi, where (ϕ, ψ, ψ̂) : CA → CA′ denotes an embedding where
CA takes the role of the ambient space and CA′ takes the role of
the embedded space.

For a basis {δ1, ..., δk} of g′, define the mean curvature
HA′ : M → A′ as:

HA′(m) = ϕ(h(m, α(δj , φ ◦ ψ(δj))))(h′)ij , m ∈ M.

α is the NC version of the second fundamental form; the
above formula sees the mean curvature as the trace of the
second fundamental form.

HA′(m) is independent of the choice of basis {δ1, ..., δk}.
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The third lore slide

Our definition of mean curvature only works in the very special
case where the module M ′ in CA′ is free, and has a basis that plays
nicely with a basis of g′.

We would like to extend it to general projective modules, but we
don’t know how.

For this reason (and some others) we decided to look at
noncommutative spheres.
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The NC 3-sphere

Let θ ∈ R. The noncommutative 3-sphere S3
θ is the unital

∗-algebra with generators Z1,Z
∗
1 ,Z2,Z

∗
2 subject to the relations

Z2Z1 = qZ1Z2 Z ∗
2Z1 = q̄Z1Z

∗
2 Z2Z

∗
1 = q̄Z ∗

1Z2

Z ∗
2Z

∗
1 = qZ ∗

1Z
∗
2 Z ∗

j Zj = ZjZ
∗
j Z1Z

∗
1 + Z2Z

∗
2 = 1,

where q = e i2πθ.



The NC 4-sphere

The noncommutative 4-sphere S4
θ is the unital ∗-algebra with

generators Z1,Z
∗
1 ,Z2,Z

∗
2 ,T subject to the relations
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∗
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∗
1 = q̄Z ∗
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∗
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∗
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∗
2 + T 2 = 1,

where T = T ∗ is central, and q is as before.



Embedding the 3-sphere into the 4-sphere

An embedding of S3
θ into S4

θ requires a surjective homomorphism
ϕ : S4

θ → S3
θ , but how to find such a thing?

We consider a related
problem.
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The embedding

By using the principle “square peg → square hole”, we find
ϕ : S4

θ → S3
θ .

When checking the more technical machinery of embeddings of
real calculi, this leads to an embedding of the noncommutative
3-sphere.
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The End



Nah, just kidding!

Odd-dimensional NC spheres in general: S2n−1
θ has generators

Z1,Z2, ...,Zn,Z
∗
1 , ...,Z

∗
n , subject to the relations

ZjZi = qijZiZj Z ∗
j Z

∗
i = qijZ

∗
i Z

∗
j

Z ∗
j Zi = q̄ijZiZ

∗
j ZjZ

∗
i = q̄ijZ

∗
i Zj

ZjZ
∗
j = Z ∗

j Zj = |Zj |2,
|Z1|2 + |Z2|2 + · · ·+ |Zn|2 = 1

In general, qij = e i2πθij = q̄ji = e−i2πθji , and qii = 1 for
i , j = 1, ..., n.

As a special case, consider S5
θ , with q12 = q = e i2πθ, which is the

same q used for S3
θ and S4

θ .
Can we find a surjective homomorphism S5

θ → S4
θ ?
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A curious observation

We have the following situation.

What gives?
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Reexamining S4
θ

We had the noncommutative 4-sphere S4
θ be given by the relations

Z2Z1 = qZ1Z2 Z ∗
2Zz = q̄Z1Z

∗
2 Z2Z

∗
1 = q̄Z ∗

1Z2

Z ∗
2Z

∗
1 = qZ ∗

1Z
∗
2 Z ∗

j Zj = ZjZ
∗
j Z1Z

∗
1 + Z2Z

∗
2 + T 2 = 1,

where T = T ∗ is central.

Why does T have to be central?

If T is not central, then what should the commutation
relations with Z1 and Z2 look like?
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Breaking up the generators

The generators Z1,Z2, etc. of S
2n−1
θ can be seen as

noncommutative versions of the complex coordinates z1, z2, ... for a
sphere embedded in Cn, and can therefore be broken up into real
and imaginary parts.

In general, we do the following:

Xj =
1

2
(Zj + Z ∗

j ) (”Real part”)

Yj =
1

2
(Zj − Z ∗

j ) (”Imaginary part”),

and one can check that Zj = Xj + iYj , and that Xj = X ∗
j and

Yj = Y ∗
j .

Can we express commutation relations in terms of Xj and Yj?
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Commutation relations in terms of X and Y

After doing some computations, one can retrieve the following
relations for S2n−1

θ in terms of Xj ,Yj ,Xk ,Yk :

XkXj = Re(qjk)XjXk − i Im(qjk)YjYk ,

YkYj = Re(qjk)YjYk − i Im(qjk)XjXk ,

XkYj = Re(qjk)XjYk + i Im(qjk)YjXk ,

YkXj = Re(qjk)YjXk + i Im(qjk)XjYk .

For S2n
θ , can we assume that T takes the role of Xn+1, and that it

satisfies the above commutation relations? This would of course
lead to some other algebra than what we previously meant by S2n

θ ,
but maybe such an algebra would work better in the context of
embeddings?
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A rude awakening

This idea, if taken to its logical conclusion, results in two options.

1 TXj = XjT = 0 and Re(qj ,n+1) or TYj = YjT = 0 and
Im(qj ,n+1) = 0,

2 TXj = XjT = TYj = YjT = 0, with no restrictions on qj ,n+1.

I cannot explain on a conceptual level why it would be essential for
T to be a zero divisor. Neither am I certain whether any of the
above relations would result in a well-defined structure.
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Ditching the complexity

Instead of using generators Zj for our algebra, can we work directly
with the Xj ’s themselves. This has some potential advantages, as
it would a more unified way of characterizing θ-deformed spheres.

Let S̃n
θ denote the unital ∗-algebra algebra generated by hermitian

generators X1, ...Xn+1 subject to the relations

XkXj = qjkXjXk , X 2
1 + X 2

2 + ...+ X 2
n + X 2

n+1 = 1,

where qjk = e i2πθjk , and θkj = −θjk ∈ R.
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Some consequences

Well-definedness nonwithstanding, S̃n
θ may not lead us to the

promised land. Let us consider how S̃3
θ and S3

θ stack up to one
another.

Setting Z̃1 = X1 + iX2 and Z̃2 = X3 + iX4 and letting
q13 = q24 = q14 = q23 = q = e i2πθ, one gets the following:

Z2Z1 = qZ1Z2 Z̃2Z̃1 = qZ̃1Z̃2

Z ∗
2Z1 = q̄Z1Z

∗
2 Z̃ ∗

2 Z̃1 = qZ̃1Z̃
∗
2

In other words, the commutation relations on S̃3
θ do not consider

its ∗-structure in a similar way as they do for S3
θ . While not

completely unexpected, it makes me question whether S̃n
θ is the

way to go...
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The End


