Commutation relations for a class of noncommutative spheres

Axel Tiger Norkvist

Department of Mathematics, Linköping University

March 22, 2024

SNAG 2024

The first lore slide

My entire PhD project revolved around the noncommutative geometry of structures called *real calculi*. A real calculus is a structure $C_A = (A, \mathfrak{g}, M, \varphi)$, where

- A is a unital *-algebra,
- g is a real Lie algebra of hermitian derivations,
- M is a (right) A-module, and
- $\varphi : \mathfrak{g} \to M$ is a \mathbb{R} -linear map such that $\varphi(\mathfrak{g})$ generates M.

The first lore slide

My entire PhD project revolved around the noncommutative geometry of structures called *real calculi*. A real calculus is a structure $C_A = (A, \mathfrak{g}, M, \varphi)$, where

- A is a unital *-algebra,
- g is a real Lie algebra of hermitian derivations,
- M is a (right) A-module, and
- $\varphi : \mathfrak{g} \to M$ is a \mathbb{R} -linear map such that $\varphi(\mathfrak{g})$ generates M.

To discuss *geometry*, we needed a notion of metric h. A metric (in this framework) is defined as a hermitian form on M, with some added invertibility conditions.

The first lore slide

My entire PhD project revolved around the noncommutative geometry of structures called *real calculi*. A real calculus is a structure $C_A = (A, \mathfrak{g}, M, \varphi)$, where

- A is a unital *-algebra,
- g is a real Lie algebra of hermitian derivations,
- M is a (right) A-module, and
- $\varphi : \mathfrak{g} \to M$ is a \mathbb{R} -linear map such that $\varphi(\mathfrak{g})$ generates M.

To discuss *geometry*, we needed a notion of metric h. A metric (in this framework) is defined as a hermitian form on M, with some added invertibility conditions.

We can discuss the notion of Levi-Civita connections ∇ in the framework.

The second lore slide

One can construct a theory of isometric embeddings for real calculi, where $(\phi,\psi,\hat{\psi}):\mathcal{C}_{\mathcal{A}}\to\mathcal{C}_{\mathcal{A}'}$ denotes an embedding where $\mathcal{C}_{\mathcal{A}}$ takes the role of the ambient space and $\mathcal{C}_{\mathcal{A}'}$ takes the role of the embedded space.

The second lore slide

One can construct a theory of isometric embeddings for real calculi, where $(\phi,\psi,\hat{\psi}):C_{\mathcal{A}}\to C_{\mathcal{A}'}$ denotes an embedding where $C_{\mathcal{A}}$ takes the role of the ambient space and $C_{\mathcal{A}'}$ takes the role of the embedded space.

For a basis $\{\delta_1,...,\delta_k\}$ of \mathfrak{g}' , define the mean curvature $\mathcal{H}_{\mathcal{A}'}:\mathcal{M}\to\mathcal{A}'$ as:

$$H_{\mathcal{A}'}(m) = \phi(h(m, \alpha(\delta_j, \varphi \circ \psi(\delta_j))))(h')^{ij}, \quad m \in M.$$

The second lore slide

One can construct a theory of isometric embeddings for real calculi, where $(\phi,\psi,\hat{\psi}):C_{\mathcal{A}}\to C_{\mathcal{A}'}$ denotes an embedding where $C_{\mathcal{A}}$ takes the role of the ambient space and $C_{\mathcal{A}'}$ takes the role of the embedded space.

For a basis $\{\delta_1,...,\delta_k\}$ of \mathfrak{g}' , define the mean curvature $\mathcal{H}_{\mathcal{A}'}: \mathcal{M} \to \mathcal{A}'$ as:

$$H_{\mathcal{A}'}(m) = \phi(h(m, \alpha(\delta_j, \varphi \circ \psi(\delta_j))))(h')^{ij}, \quad m \in M.$$

- α is the NC version of the second fundamental form; the above formula sees the mean curvature as the trace of the second fundamental form.
- $H_{\mathcal{A}'}(m)$ is independent of the choice of basis $\{\delta_1, ..., \delta_k\}$.

The third lore slide

Our definition of mean curvature only works in the very special case where the module M' in $C_{\mathcal{A}'}$ is free, and has a basis that plays nicely with a basis of \mathfrak{g}' .

The third lore slide

Our definition of mean curvature only works in the very special case where the module M' in $C_{\mathcal{A}'}$ is free, and has a basis that plays nicely with a basis of \mathfrak{g}' .

We would like to extend it to general projective modules, but we don't know how.

The third lore slide

Our definition of mean curvature only works in the very special case where the module M' in $C_{\mathcal{A}'}$ is free, and has a basis that plays nicely with a basis of \mathfrak{g}' .

We would like to extend it to general projective modules, but we don't know how.

For this reason (and some others) we decided to look at noncommutative spheres.

The NC 3-sphere

Let $\theta \in \mathbb{R}$. The noncommutative 3-sphere S^3_{θ} is the unital *-algebra with generators Z_1, Z_1^*, Z_2, Z_2^* subject to the relations

$$\begin{split} Z_2 Z_1 &= q Z_1 Z_2 & Z_2^* Z_1 = \bar{q} Z_1 Z_2^* & Z_2 Z_1^* = \bar{q} Z_1^* Z_2 \\ Z_2^* Z_1^* &= q Z_1^* Z_2^* & Z_j^* Z_j = Z_j Z_j^* & Z_1 Z_1^* + Z_2 Z_2^* = \mathbb{1}, \end{split}$$

where $q = e^{i2\pi\theta}$.

The NC 4-sphere

The noncommutative 4-sphere S_{θ}^4 is the unital *-algebra with generators $Z_1, Z_1^*, Z_2, Z_2^*, T$ subject to the relations

$$\begin{split} Z_2 Z_1 &= q Z_1 Z_2 \qquad Z_2^* Z_1 = \bar{q} Z_1 Z_2^* \qquad Z_2 Z_1^* = \bar{q} Z_1^* Z_2 \\ Z_2^* Z_1^* &= q Z_1^* Z_2^* \qquad Z_j^* Z_j = Z_j Z_j^* \qquad Z_1 Z_1^* + Z_2 Z_2^* + T^2 = \mathbb{1}, \end{split}$$

where $T = T^*$ is central, and q is as before.

Embedding the 3-sphere into the 4-sphere

An embedding of S^3_{θ} into S^4_{θ} requires a surjective homomorphism $\phi: S^4_{\theta} \to S^3_{\theta}$, but how to find such a thing?

Embedding the 3-sphere into the 4-sphere

An embedding of S^3_{θ} into S^4_{θ} requires a surjective homomorphism $\phi: S^4_{\theta} \to S^3_{\theta}$, but how to find such a thing? We consider a related problem.

The embedding

By using the principle "square peg \to square hole", we find $\phi: S^4_\theta \to S^3_\theta.$

The embedding

By using the principle "square peg \to square hole", we find $\phi: S^4_\theta \to S^3_\theta$.

When checking the more technical machinery of embeddings of real calculi, this leads to an embedding of the noncommutative 3-sphere.

The End

Nah, just kidding!

Odd-dimensional NC spheres in general: S_{θ}^{2n-1} has generators $Z_1, Z_2, ..., Z_n, Z_1^*, ..., Z_n^*$, subject to the relations

$$Z_{j}Z_{i} = q_{ij}Z_{i}Z_{j}$$
 $Z_{j}^{*}Z_{i}^{*} = q_{ij}Z_{i}^{*}Z_{j}^{*}$
 $Z_{j}^{*}Z_{i} = \bar{q}_{ij}Z_{i}Z_{j}^{*}$ $Z_{j}Z_{i}^{*} = \bar{q}_{ij}Z_{i}^{*}Z_{j}$
 $Z_{j}Z_{j}^{*} = Z_{j}^{*}Z_{j} = |Z_{j}|^{2},$
 $|Z_{1}|^{2} + |Z_{2}|^{2} + \dots + |Z_{n}|^{2} = 1$

In general, $q_{ij}=e^{i2\pi\theta_{ij}}=\bar{q}_{ji}=e^{-i2\pi\theta_{ji}}$, and $q_{ii}=1$ for i,j=1,...,n.

Nah, just kidding!

Odd-dimensional NC spheres in general: S_{θ}^{2n-1} has generators $Z_1, Z_2, ..., Z_n, Z_1^*, ..., Z_n^*$, subject to the relations

$$Z_{j}Z_{i} = q_{ij}Z_{i}Z_{j}$$
 $Z_{j}^{*}Z_{i}^{*} = q_{ij}Z_{i}^{*}Z_{j}^{*}$ $Z_{j}Z_{i}^{*} = \bar{q}_{ij}Z_{i}^{*}Z_{j}^{*}$ $Z_{j}Z_{i}^{*} = \bar{q}_{ij}Z_{i}^{*}Z_{j}^{*}$

In general, $q_{ij}=e^{i2\pi\theta_{ij}}=\bar{q}_{ji}=e^{-i2\pi\theta_{ji}}$, and $q_{ii}=1$ for i,j=1,...,n.

As a special case, consider S^5_{θ} , with $q_{12}=q=e^{i2\pi\theta}$, which is the same q used for S^3_{θ} and S^4_{θ} .

Can we find a surjective homomorphism $S^5_ heta o S^4_ heta ?$

A curious observation

We have the following situation.

A curious observation

We have the following situation.

What gives?

Reexamining S_{θ}^{4}

We had the noncommutative 4-sphere $S^4_{ heta}$ be given by the relations

$$\begin{split} Z_2 Z_1 &= q Z_1 Z_2 & Z_2^* Z_z = \bar{q} Z_1 Z_2^* & Z_2 Z_1^* = \bar{q} Z_1^* Z_2 \\ Z_2^* Z_1^* &= q Z_1^* Z_2^* & Z_j^* Z_j = Z_j Z_j^* & Z_1 Z_1^* + Z_2 Z_2^* + \mathcal{T}^2 = \mathbb{1}, \end{split}$$

where $T = T^*$ is central.

Reexamining S_{θ}^{4}

We had the noncommutative 4-sphere $S^4_{ heta}$ be given by the relations

$$\begin{split} Z_2 Z_1 &= q Z_1 Z_2 \qquad Z_2^* Z_z = \bar{q} Z_1 Z_2^* \qquad Z_2 Z_1^* = \bar{q} Z_1^* Z_2 \\ Z_2^* Z_1^* &= q Z_1^* Z_2^* \qquad Z_j^* Z_j = Z_j Z_j^* \qquad Z_1 Z_1^* + Z_2 Z_2^* + T^2 = \mathbb{1}, \end{split}$$

where $T = T^*$ is central.

• Why does T have to be central?

Reexamining S_{θ}^4

We had the noncommutative 4-sphere $S^4_{ heta}$ be given by the relations

$$\begin{split} Z_2 Z_1 &= q Z_1 Z_2 \qquad Z_2^* Z_z = \bar{q} Z_1 Z_2^* \qquad Z_2 Z_1^* = \bar{q} Z_1^* Z_2 \\ Z_2^* Z_1^* &= q Z_1^* Z_2^* \qquad Z_j^* Z_j = Z_j Z_j^* \qquad Z_1 Z_1^* + Z_2 Z_2^* + T^2 = \mathbb{1}, \end{split}$$

where $T = T^*$ is central.

- Why does T have to be central?
- If T is not central, then what should the commutation relations with Z₁ and Z₂ look like?

Breaking up the generators

The generators Z_1, Z_2 , etc. of S_{θ}^{2n-1} can be seen as noncommutative versions of the complex coordinates $z_1, z_2, ...$ for a sphere embedded in \mathbb{C}^n , and can therefore be broken up into real and imaginary parts.

Breaking up the generators

The generators Z_1, Z_2 , etc. of S_{θ}^{2n-1} can be seen as noncommutative versions of the complex coordinates $z_1, z_2, ...$ for a sphere embedded in \mathbb{C}^n , and can therefore be broken up into real and imaginary parts. In general, we do the following:

$$egin{aligned} X_j &= rac{1}{2}(Z_j + Z_j^*) \quad (ext{"Real part"}) \ Y_j &= rac{1}{2}(Z_j - Z_j^*) \quad (ext{"Imaginary part"}), \end{aligned}$$

and one can check that $Z_j = X_j + iY_j$, and that $X_j = X_j^*$ and $Y_j = Y_j^*$.

Breaking up the generators

The generators Z_1, Z_2 , etc. of S_{θ}^{2n-1} can be seen as noncommutative versions of the complex coordinates $z_1, z_2, ...$ for a sphere embedded in \mathbb{C}^n , and can therefore be broken up into real and imaginary parts. In general, we do the following:

$$egin{aligned} X_j &= rac{1}{2}(Z_j + Z_j^*) \quad (ext{"Real part"}) \ Y_j &= rac{1}{2}(Z_j - Z_j^*) \quad (ext{"Imaginary part"}), \end{aligned}$$

and one can check that $Z_j = X_j + iY_j$, and that $X_j = X_j^*$ and $Y_j = Y_j^*$.

• Can we express commutation relations in terms of X_j and Y_j ?

Commutation relations in terms of X and Y

After doing some computations, one can retrieve the following relations for S_{θ}^{2n-1} in terms of X_j, Y_j, X_k, Y_k :

$$\begin{aligned} X_k X_j &= \operatorname{Re}(q_{jk}) X_j X_k - i \operatorname{Im}(q_{jk}) Y_j Y_k, \\ Y_k Y_j &= \operatorname{Re}(q_{jk}) Y_j Y_k - i \operatorname{Im}(q_{jk}) X_j X_k, \\ X_k Y_j &= \operatorname{Re}(q_{jk}) X_j Y_k + i \operatorname{Im}(q_{jk}) Y_j X_k, \\ Y_k X_j &= \operatorname{Re}(q_{jk}) Y_j X_k + i \operatorname{Im}(q_{jk}) X_j Y_k. \end{aligned}$$

Commutation relations in terms of X and Y

After doing some computations, one can retrieve the following relations for S_{θ}^{2n-1} in terms of X_j, Y_j, X_k, Y_k :

$$\begin{aligned} X_k X_j &= \operatorname{Re}(q_{jk}) X_j X_k - i \operatorname{Im}(q_{jk}) Y_j Y_k, \\ Y_k Y_j &= \operatorname{Re}(q_{jk}) Y_j Y_k - i \operatorname{Im}(q_{jk}) X_j X_k, \\ X_k Y_j &= \operatorname{Re}(q_{jk}) X_j Y_k + i \operatorname{Im}(q_{jk}) Y_j X_k, \\ Y_k X_j &= \operatorname{Re}(q_{jk}) Y_j X_k + i \operatorname{Im}(q_{jk}) X_j Y_k. \end{aligned}$$

For S_{θ}^{2n} , can we assume that T takes the role of X_{n+1} , and that it satisfies the above commutation relations? This would of course lead to some other algebra than what we previously meant by S_{θ}^{2n} , but maybe such an algebra would work better in the context of embeddings?

A rude awakening

This idea, if taken to its logical conclusion, results in two options.

A rude awakening

This idea, if taken to its logical conclusion, results in two options.

- $TX_j = X_j T = 0$ and $Re(q_{j,n+1})$ or $TY_j = Y_j T = 0$ and $Im(q_{j,n+1}) = 0$,
- ② $TX_j = X_j T = TY_j = Y_j T = 0$, with no restrictions on $q_{j,n+1}$.

A rude awakening

This idea, if taken to its logical conclusion, results in two options.

- ② $TX_j = X_j T = TY_j = Y_j T = 0$, with no restrictions on $q_{j,n+1}$.

I cannot explain on a conceptual level why it would be essential for $\mathcal T$ to be a zero divisor. Neither am I certain whether any of the above relations would result in a well-defined structure.

Ditching the complexity

Instead of using generators Z_j for our algebra, can we work directly with the X_j 's themselves. This has some potential advantages, as it would a more unified way of characterizing θ -deformed spheres.

Ditching the complexity

Instead of using generators Z_j for our algebra, can we work directly with the X_j 's themselves. This has some potential advantages, as it would a more unified way of characterizing θ -deformed spheres. Let \tilde{S}^n_{θ} denote the unital *-algebra algebra generated by hermitian generators $X_1,...X_{n+1}$ subject to the relations

$$X_k X_j = q_{jk} X_j X_k, \quad X_1^2 + X_2^2 + ... + X_n^2 + X_{n+1}^2 = \mathbb{1},$$

where $q_{jk}=e^{i2\pi\theta_{jk}}$, and $\theta_{kj}=-\theta_{jk}\in\mathbb{R}$.

Some consequences

Well-definedness nonwithstanding, \tilde{S}^n_{θ} may not lead us to the promised land. Let us consider how \tilde{S}^3_{θ} and S^3_{θ} stack up to one another.

Some consequences

Well-definedness nonwithstanding, \tilde{S}^n_{θ} may not lead us to the promised land. Let us consider how \tilde{S}^3_{θ} and S^3_{θ} stack up to one another. Setting $\tilde{Z}_1 = X_1 + iX_2$ and $\tilde{Z}_2 = X_3 + iX_4$ and letting $q_{13} = q_{24} = q_{14} = q_{23} = q = e^{i2\pi\theta}$, one gets the following:

$$egin{align} Z_2 Z_1 &= q Z_1 Z_2 & \qquad \qquad & ilde{Z}_2 ilde{Z}_1 &= q ilde{Z}_1 ilde{Z}_2 \ Z_2^* Z_1 &= ar{q} Z_1 Z_2^* & \qquad & ilde{Z}_2^* ilde{Z}_1 &= q ilde{Z}_1 ilde{Z}_2^* \ \end{array}$$

Some consequences

Well-definedness nonwithstanding, \tilde{S}^n_{θ} may not lead us to the promised land. Let us consider how \tilde{S}^3_{θ} and S^3_{θ} stack up to one another. Setting $\tilde{Z}_1 = X_1 + iX_2$ and $\tilde{Z}_2 = X_3 + iX_4$ and letting $q_{13} = q_{24} = q_{14} = q_{23} = q = e^{i2\pi\theta}$, one gets the following:

$$\begin{split} Z_2 Z_1 &= q Z_1 Z_2 & \qquad \qquad \tilde{Z}_2 \tilde{Z}_1 &= q \tilde{Z}_1 \tilde{Z}_2 \\ Z_2^* Z_1 &= \bar{q} Z_1 Z_2^* & \qquad \tilde{Z}_2^* \tilde{Z}_1 &= q \tilde{Z}_1 \tilde{Z}_2^* \end{split}$$

In other words, the commutation relations on \tilde{S}^3_{θ} do not consider its *-structure in a similar way as they do for S^3_{θ} . While not completely unexpected, it makes me question whether \tilde{S}^n_{θ} is the way to go...

The End