A Lie-type construction based on twisted derivations SNAG 6 workshop

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

Mälardalen University

March 22, 2024

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras

The n-L A of Jacobians

The n-HLA of

Twisted derivations

 $(\sigma, \, au, \, n)$ -HLAs

More general

General Leibniz-type rules

Structure

References

Introduction

n-Lie algebras The n-LA of Jacobians

The n-HLA of Jacobians

A proper generalization Twisted derivations Generalized Jacobian (σ, τ, n) -HLAs

More general commutation rules

General Leibniz-type rules One last case State of the art

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

This talk is based on the following papers:

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras

n-Lie algebras

An *n*-Lie algebra as an algebra \mathcal{A} with a totally skew-symmetric *n*-ary operation $[x_1, \ldots, x_n]$ verifying an *n*-**Jacobi identity**:

$$[[x_1,\ldots,x_n],y_2,\ldots,y_n]=\sum_{i=1}^n[x_1,\ldots,x_{i-1},[x_i,y_2,\ldots,y_n],x_{i+1},\ldots,x_n]$$

Derivations of *n*-Lie algebras

A derivation D of an n-Lie algebra is a \mathbb{F} -linear map of \mathcal{A} verifying an n-ary **Leibniz rule**:

$$[x_1,\ldots,x_n]D = \sum_{i=1}^n [x_1,\ldots,x_{i-1},x_iD,x_{i+1},\ldots,x_n]$$

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

Introduction

n-Lie algebras
The n-LA of Jacobians

The n-HLA of Jacobians

A proper generalization
Twisted derivations
Generalized Jacobian

re general nmutation rule

General Leibniz-type rules

one last case tate of the art

Adjoint multiplication on *n*-Lie algebras

One important characterization of Lie algebras is given by the Jacobi identity: the adjoint multiplication operator is a derivation of the algebra.

Adjoint of an *n*-Lie algebra

The **adjoint operator** of an *n*-Lie algebra $(A, [\star, ..., \star])$ is the linear operator $[\star, y_2, ..., y_n] : x \longmapsto [x, y_2, ..., y_n]$

Proposition

The adjoint operator is a derivation of $(A, [\star, \ldots, \star])$.

▶ This property will be essential to finding a generalization of these structures.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras

The n-LA of Jacobians

The n-HLA of Jacobians

A proper generalization
Twisted derivations
Generalized Jacobian

More general

General Leibniz-type rules

senerai Leibniz-type ruies One last case

Notation

Across this section Filippov's notation will be used. Filippov applies operators on the right instead of the left:

	Usual notation	Filippov's notation
Composition of maps	$D\circ\sigma$	D
Image by maps	D(x)	хD
Image by multiple maps	$D(\sigma(x))$	xσD

Table: Usual and Filippov's notations

Across this section we use the following products:

- ▶ The dot "·" is the commutative associative product on A.
- \blacktriangleright $[\star, \ldots, \star]$ is an *n*-ary product on \mathcal{A} (usually the Jacobian).

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

Introduction

n-Lie algebras

The n-LA of Jacobians

The n-HLA of Jacobians

- A proper generalization
 Twisted derivations
- Generalized Jacobian

More general

Seneral Leibniz-type rules

eneral Leibniz-type ru

The Jacobian determiannts

Jacobian of a 2-variable function

The Jacobian determinant of a differentiable function $f: \mathbb{R}^2 \to \mathbb{R}^2$ is the determinant of the Jacobian matrix of partial derivatives.

$$[f_1, f_2] := \left| \frac{df(x, y)}{d(x, y)} \right| = \left| \begin{array}{cc} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{array} \right| = \frac{\partial f_1}{\partial x} \cdot \frac{\partial f_2}{\partial y} - \frac{\partial f_2}{\partial x} \cdot \frac{\partial f_1}{\partial y}$$

Jacobian of a commutative associative algebra

Given $\{D_1,\ldots,D_n\}$ pairwise commuting derivations of (\mathcal{A},\cdot) , the Jacobian product is defined by

$$[x_1,\ldots,x_n]=|x_iD_j|=\begin{vmatrix}x_1D_1&\ldots&x_1D_n\\\vdots&\ddots&\vdots\\x_nD_1&\ldots&x_nD_n\end{vmatrix}.$$

construction based on twisted derivations German Garcia

A Lie-type

Butenegro Sergei Silvestrov Abdennour Kitouni

The n-I A of Jacobians

The Jacobian determinants

This product is skew-symmetric, and derivations verify the following properties:

- ▶ The adjoint $[\star, y_2, ..., y_n] : x \mapsto [x, y_2, ..., y_n]$ is a derivation on (A, \cdot) .
- ▶ A derivation D of (A, \cdot) that commutes with all D_i is a derivation in $(A, [\star, \ldots, \star])$.

Are these two properties enough to ensure that the adjont is a derivation of $(A, [\star, \ldots, \star])$?

▶ Unfortunately not, a bit more artillery is needed.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

Introduction

The n-I A of Jacobians

The n-HLA of

Jacobians
A proper generalization

Twisted derivations Generalized Jacobian

 (σ, τ, n) -HLAs

mmutation rules

General Leibniz-type rules

One last case
State of the art

The *n*-Lie algebra of Jacobians

Proposition (Filippov, p.576)

For any two square matrices $A = (a_{ii})$ and $B = (b_{ii})$ of order n:

$$\sum_{i=1}^{n} \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{i-11} & \dots & a_{i-1n} \\ b_{i1} & \dots & b_{in} \\ a_{i+11} & \dots & a_{i+1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} \begin{vmatrix} a_{11} & \dots & a_{1j-1} & b_{1j} & a_{1j+1} & \dots & a_{1n} \\ \vdots & & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}.$$

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

The n-I A of Jacobians

Constructing the Jacobian algebra

Using this result, one can compare both terms of the Jacobi identity:

$$\begin{aligned} & [[x_1, \dots, x_n], y_2, \dots, y_n] - \sum_{i=1}^n [x_1, \dots, x_{i-1}, [x_i, y_2, \dots, y_n], x_{i+1}, \dots, x_n] \\ & = \sum_{j=1}^n \begin{vmatrix} x_1 D_1 & \dots & x_1 D_{j-1} & \Delta_{1j} & x_1 D_{j+1} & \dots & x_1 D_n \\ \vdots & & \vdots & \vdots & & \vdots \\ x_n D_1 & \dots & x_n D_{j-1} & \Delta_{1j} & x_n D_{j+1} & \dots & x_n D_n, \end{vmatrix} \end{aligned}$$

where the Δ_{ij} are certain determinants depending on x_i, y_2, \dots, y_n . By taking minors on the Δ_{ii} , we can express this difference as

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

Introduction

The n-I A of Jacobians

The n-HLA of

Jacobians

Twisted derivations
Generalized Jacobian

ore general mmutation rules

General Leibniz-type rules

General Leibniz-type rules

Constructing the Jacobian algebra

$$= \sum_{j,k=1}^{n} (-1)^{s+k} y_s D_k D_j \begin{vmatrix} x_1 D_1 & \dots & x_1 D_{j-1} & M_{1k} & x_1 D_{j+1} & \dots & x_1 D_n \\ \vdots & & \vdots & \vdots & & \vdots \\ x_n D_1 & \dots & x_n D_{j-1} & M_{nk} & x_n D_{j+1} & \dots & x_n D_n \end{vmatrix},$$

$$= \sum_{j,k=1}^{n} (-1)^{s+k} y_s D_k D_j |x^{(1)} & \dots & x^{(j-1)} & M_k & x^{(j+1)} & \dots & x^{(n)}| = 0.$$

For each k, j, the terms in $D_j D_k$ and $D_k D_j$ cancel by commutation of the D_i . That is, the difference

$$[[x_1,\ldots,x_n],y_2,\ldots,y_n]-\sum_{i=1}^n[x_1,\ldots,x_{i-1},[x_i,y_2,\ldots,y_n],x_{i+1},\ldots,x_n]$$

is a sum of zeroes!

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras

The n-LA of Jacobians

The n-HLA of Jacobians

A proper generalization
Twisted derivations
Generalized Jacobian

re general nmutation rules

neral Leibniz-type rules

The Jacobian algebra

Theorem (Filippov, Theorem 1)

Let (A, \cdot) be a commutative associative algebra, $\{D_1, \ldots, D_n\}$ pairwise commuting derivations of (A, \cdot) . The Jacobian algebra $(A, [\star, \ldots, \star])$, where $[x_1, \ldots, x_n] = |x_i D_j|$, is an *n*-Lie algebra.

There are two important aspects to consider on this construction:

- ▶ The derivatives $\{D_1, \ldots, D_n\}$ commute.
- ▶ The derivatives $\{D_1, \ldots, D_n\}$ are untwisted.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras

The n-LA of Jacobians

The n-HLA of Jacobians

- A proper generalization Twisted derivations
 - Twisted derivations

 (σ, τ, n) -HLAs

More general

General Leibniz-type rules

eneral Leibniz-type rules

State of the art

A proper generalization entails...

The Jacobian product is a product of images of elements by derivations of the algebra. In order to find a proper generalization of Filippov's Jacobian algebra one needs to have:

- ightharpoonup operators generalizing derivations (\leadsto (σ , au)-derivations),
- ▶ a product generalizing the Jacobian (→ totally skew-symmetric),
- ▶ a modified version of the Jacobi identity (~ hom-Lie or hom-Leibniz),
- ▶ one or more twisting maps, if we go the hom-algebra route.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

Introduction

n-Lie algebras

The p LII A of

A proper generalization

Twisted derivations

 $\sigma,\, au,\,n$)-HLAs

lore general

neral Leibniz-type rules

n-hom-Lie algebras

n-hom-Lie algebras

An *n*-hom-Lie algebra is an hom-algebra $(A, [\star, \ldots, \star], \alpha)$ where α is a linear map on $A, [\star, \ldots, \star]$ is totally skew-symmetric and the *n*-hom-Jacobi identity holds:

$$[[x_1,\ldots,x_n],y_2\alpha,\ldots,y_n\alpha]=\sum_{i=1}^n[x_1\alpha,\ldots,x_{i-1}\alpha,[x_i,y_2,\ldots,y_n],x_{i+1}\alpha,\ldots,x_n\alpha]$$

In these algebras the adjoint multiplication is not a derivation, but if y_2, \ldots, y_n are fixed points of α it obeys a Leibniz-type rule twisted by α .

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

Introduction

n-Lie algebras

The n-LA of Jacobians

The n-HLA of Jacobians

A proper generalization
Twisted derivations
Generalized Jacobian

ore general

nmutation rules

eral Leibniz-type rule

one last case tate of the art

Twisted derivations

(σ, τ) -derivations on *n*-ary algebras

A (σ, τ) -derivation D on an n-ary algebra $(\mathcal{A}, [\star, \dots, \star])$ is a linear operator on \mathcal{A} verifying the twisted n-ary **Leibniz rule**, for all $x_1, \dots, x_n \in \mathcal{A}$,

$$[x_1,\ldots,x_n]D=\sum_{i=1}^n[x_1\sigma,\ldots,x_{i-1}\sigma,x_iD,x_{i+1}\tau,\ldots,x_n\tau]$$

If n = 2, this condition is the twisted **Leibniz rule**:

$$(x \cdot y)D = xD \cdot y\tau + x\sigma \cdot yD.$$

We can use this operators to define a new operator generalizing the Jacobian.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

troduction

The n-LA of Jacobians

The n-HLA of Jacobians

A proper generalizati

Twisted derivations

 $(\sigma,\, au,\, au)$ -HLAs

ommutation rules

General Leibniz-type rules One last case

State of the art

Generalized Jacobian

Generalized Jacobian of *n* elements

Let $\{D_i: i=1,\ldots,n\}$ be (σ_i,τ_i) -derivations of (\mathcal{A},\cdot) . The **generalized Jacobian** of n elements is the determinant

$$[x_1,\ldots,x_n]_g = \begin{vmatrix} x_1D_1 & \ldots & x_1D_n \\ \vdots & \ddots & \vdots \\ x_nD_1 & \ldots & x_nD_n \end{vmatrix}.$$

► This determinant is totally skew-symmetric.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras

The n-HLA of

A proper generaliza Twisted derivations

Generalized Jacobian

 $(\sigma,\, au,\, au)$ -HLAs

More general commutation rule

General Leibniz-type rules

oeneral Leibniz-type

State of the art

Properties of the generalized Jacobian

The adjoint map being a derivation of the algebra characterizes Lie algebras. The generalized Jacobian (in general) does not verify this.

▶ If the D_i are pairwise commuting (σ, τ) -derivations commuting with σ and τ , familiar relations are obtained.

Proposition

Let $y_2, \ldots, y_n \in \mathcal{A}$. The linear operator $D: x \mapsto [x, y_2, \ldots, y_n]_g$ is a (σ, τ) -derivation on (\mathcal{A}, \cdot) .

Proposition

Let D be a (σ, τ) -derivation on (\mathcal{A}, \cdot) such that $DD_i = D_iD$ for all i. Then D is a (σ, τ) -derivation on $(\mathcal{A}, [\star, \ldots, \star]_g)$.

- ▶ Observe that D need not commute with σ and τ .
- ► These properties indicate that one can open nested generalized Jacobians using the corresponding Leibniz-type rule.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras
The n-LA of Jacobians

The n-HLA of Jacobians

Twisted derivations

Generalized Jacobian

(σ, τ, n) -HLAs

More general commutation rules

eneral Leibniz-type rules ne last case

One last case
State of the art

Constructing a Jacobian hom-algebra

For

$$[[x_1, \dots, x_n]_g, y_2\tau, \dots, y_n\tau]_g - \sum_{i=1} [x_1\sigma, \dots, x_{i-1}\sigma, [x_i, y_2, \dots, y_n]_g, x_{i+1}\tau, \dots, x_n\tau]_g$$

$$=\sum_{i=1}^{n}\begin{vmatrix}x_{1}\sigma D_{1} & \dots & x_{1}\sigma D_{n}\\ \vdots & & \vdots\\ x_{i-1}\sigma D_{1} & \dots & x_{i-1}\sigma D_{n}\\ \Delta_{i1} & \dots & \Delta_{in}\\ x_{i+1}\tau D_{1} & \dots & x_{i+1}\tau D_{n}\\ \vdots & & \vdots\\ x_{n}\tau D_{1} & \dots & x_{n}\tau D_{n}\end{vmatrix} (=\Delta_{s})$$

where $\Delta_{ij} = \sum_{s=0}^{n} [x_i \sigma, y_2 \sigma, \dots, y_{s-1} \sigma, y_s D_j, y_{s+1} \tau, \dots, y_n \tau]_g$.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

Deferences

and the state of

n-Lie algebras

The n-HLA of

A proper generalization

Generalized Jacobian

 $\sigma, \, au, \, n$)-HLAs

re general nmutation rules

eneral Leibniz-type ri

Constructing a Jacobian hom-algebra

One may be tempted to use Filippov's trick, but in general it is not possible.

▶ The amount of iterations of σ and τ is variable!

Consider first $\sigma = \tau$, that is, the D_i are all (σ, σ) -derivations. Here the difference above takes the form

$$\sum_{j=1}^{n} \begin{vmatrix} x_1 \sigma D_1 & \dots & x_1 \sigma D_{j-1} & \Delta_{1j} & x_1 \sigma D_{j+1} & \dots & x_1 \sigma D_n \\ \vdots & & \vdots & \vdots & & \vdots \\ x_n \sigma D_1 & \dots & x_n \sigma D_{j-1} & \Delta_{1j} & x_n \sigma D_{j+1} & \dots & x_n \sigma D_n \end{vmatrix}.$$

We can apply Filippov's trick, once again take minors over the column with $D_k D_j$ and obtain a sum of zeroes.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras
The n-LA of Jacobians

The n-HLA of Jacobians

Twisted derivations

Generalized Jacobian

 $(\sigma, \, au, \, extit{n})$ -HLAs

More general

General Leibniz-type rules

The *n*-hom-Lie Jacobian algebra

Theorem (GKS, Theorem 10)

Let (\mathcal{A},\cdot) be a commutative associative algebra, $\{D_1,\ldots,D_n\}$ pairwise commuting (σ,σ) -derivations which commute with σ , $[\star,\ldots,\star]_g$ the generalized Jacobian. The triple $(\mathcal{A},[\star,\ldots,\star]_g,\sigma)$, is an n-hom-Lie algebra with n-hom-Jacobi identity

$$[[x_1, \ldots, x_n]_g, y_2\sigma, \ldots, y_n\sigma]_g = \sum_{i=1}^n [x_1\sigma, \ldots, x_{i-1}\sigma, [x_i, y_2, \ldots, y_n]_g, x_{i+1}\sigma, \ldots, x_n\sigma]_g$$

This construction can take, for example, symmetric (σ, τ) -derivations, and due to commutation they are also symmetric in $(\mathcal{A}, [\star, \ldots, \star]_g, \sigma)$.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras
The n-LA of Jacobians

The n-HLA of

Twisted derivations

Generalized Jacobian

ore general

ommutation rules

ne last case

One last case State of the art

Are we twisting the Jacobian algebra?

We can look at this construction as a *twist* of Filippov's Jacobian algebra. Let σ be multiplicative and let D_1, \ldots, D_n be pairwise commuting derivations.

Twisting the Jacobian algebra

For every D_i , the map $D_i\sigma: x \mapsto xD_i\sigma$ is a (σ, σ) -derivation. By multiplicativity of σ , the generalized Jacobian becomes $[\star, \ldots, \star]_{\sigma} = [\star, \ldots, \star]\sigma$.

Since σ commutes with all D_i , taking $D_i\sigma$ or σD_i (which is another (σ, σ) -derivation even if D_i and σ do not commute) makes no difference.

▶ This construction is, in this case, the Yau twist of the Jacobian algebra.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras

The n-HLA of

A proper generalizat Twisted derivations

Generalized Jacobian

(σ , τ , n)-HLAs

lore general ommutation rule

eneral Leibniz-type rules

eneral Leibniz-type rui ne last case

The case $\sigma \neq \tau$

So far, we have obtained a familiar structure (a twist, even) in exchange for heavy commutation relations. In the case $\sigma \neq \tau$, canceling the difference Δ_s gives rise to a new family of algebras which generalize the idea that *the adjoint* is a (σ, τ) -derivation, similarly to how *n*-hom-Lie algebras do.

(σ, τ, n) -hom-Lie algebras

A (σ, τ, n) -hom-Lie algebra is a quadruple $(\mathcal{A}, [\star, \dots, \star], \sigma, \tau)$, where $[\star, \dots, \star]$ is an n-ary totally skew-symmetric product, σ, τ linear maps on \mathcal{A} and an n-ary twisted **Jacobi identity** holds:

$$[[x_1, \ldots, x_n], y_2\tau, \ldots, y_n\tau] = \sum_{i=1}^n [x_1\sigma, \ldots, x_{i-1}\sigma, [x_i, y_2, \ldots, y_n], x_{i+1}\tau, \ldots, x_n\tau]$$

▶ **Note:** these are not *n*-ary hom-Nambu-Lie algebras, but an entirely new family altogether.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras
The n-LA of Jacobians

The n-HLA of

A proper generalization
Twisted derivations
Generalized Jacobian
(σ, τ, η)-HLAs

fore general ommutation rules

eneral Leibniz-type rules

One last case
State of the art

Finding conditions that cancel the Δ_s has proven to be a cumbersome task, so this work has gone in an unexpected direction: create the most cumbersome, general statement possible under the most general commutation relations one can find. Considering the following commutation relations, with $\lambda_i, \gamma_{ik} \in \mathcal{A}$:

$$D_k D_j = D_j D_k \cdot \gamma_{jk}, \quad D_i \sigma = \sigma D_i \cdot \lambda_i, \quad D_i \tau = \tau D_i \cdot \lambda_i$$

These, naturally, provide different Leibniz-type rules for the D_i . For example, if $\gamma_{jk}=-1=\lambda_i \ \forall i,j,k$

$$[x_1, \dots, x_n]_g D_j = \sum_{i=1}^n \left([x_1 \sigma, \dots, x_{i-1} \sigma, x_i D_j, x_{i+1} \tau, \dots, x_n \tau]_g \cdot (-1)^{n-1} + x_i D_j D_j [x_1 \sigma, \dots, x_{i-1} \sigma, x_{i+1} \tau, \dots, x_n \tau]_g^{(j)} \cdot 2(-1)^{i+j+n-1} \right)$$

where the exponent (j) indicates that we take all (σ, τ) -derivations **except** D_j .

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

ntroduction
n-Lie algebras

The n-HLA of

A proper generalization Twisted derivations Generalized Jacobian

More general commutation rules

General Leibniz-type rules

General Leibniz-type rules

And more generally.

$$[x_{1}, \dots, x_{n}]_{g} D_{j} =$$

$$\begin{bmatrix} x_{1}\sigma D_{1} \cdot \lambda_{1} & \dots & x_{1}\sigma D_{j-1} \cdot \lambda_{j-1} & x_{1}\sigma D_{j} \cdot \lambda_{j} & x_{1}\sigma D_{j+1} \cdot \lambda_{j+1} & \dots & x_{1}\sigma D_{n} \cdot \lambda_{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{i-1}\sigma D_{1} \cdot \lambda_{1} & \dots & x_{i-1}\sigma D_{j-1} \cdot \lambda_{j-1} & x_{i-1}\sigma D_{j} \cdot \lambda_{j} & x_{i-1}\sigma D_{j+1} \cdot \lambda_{j+1} & \dots & x_{i-1}\sigma D_{n} \cdot \lambda_{n} \\ x_{i}D_{j}D_{1} \cdot \lambda_{1} & \dots & x_{i}D_{j}D_{j-1} \cdot \lambda_{j-1} & x_{i}D_{j}D_{j} & x_{i}D_{j}D_{j+1} \cdot \lambda_{j+1} & \dots & x_{i}D_{j}D_{n} \cdot \lambda_{n} \\ x_{i+1}\tau D_{1} \cdot \lambda_{1} & \dots & x_{i+1}\tau D_{j-1} \cdot \lambda_{j-1} & x_{i+1}\tau D_{j} \cdot \lambda_{j} & x_{i+1}\tau D_{j+1} \cdot \lambda_{j+1} & \dots & x_{i+1}\tau D_{n} \cdot \lambda_{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n}\tau D_{1} \cdot \lambda_{1} & \dots & x_{n}\tau D_{j-1} \cdot \lambda_{j-1} & x_{n}\tau D_{j} \cdot \lambda_{j} & x_{n}\tau D_{j+1} \cdot \lambda_{j+1} & \dots & x_{n}\tau D_{n} \cdot \lambda_{n} \end{bmatrix}$$

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

General Leibniz-type rules

General Leibniz-type rules

In terms of the generalized Jacobian, each Δ_{ij} looks like

$$\Delta_{ij} = \sum_{k=1}^{J-1} \left(x_i D_j D_k \lambda_k (-1)^{i+k} \cdot [x_1 \sigma, \dots, x_{i-1} \sigma, x_{i+1} \tau, \dots, x_n \tau]_g^{(k)} \prod_{s \neq k} \lambda_s \right)$$

$$+ x_i D_j D_j (-1)^{i+j} \cdot [x_1 \sigma, \dots, x_{i-1} \sigma, x_{i+1} \tau, \dots, x_n \tau]_g^{(j)} \prod_{s \neq j} \lambda_s$$

$$+ \sum_{k=j+1}^{n} \left(x_i D_j D_k \lambda_k^{-1} (-1)^{i+k} \cdot [x_1 \sigma, \dots, x_{i-1} \sigma, x_{i+1} \tau, \dots, x_n \tau]_g^{(k)} \prod_{s \neq k} \lambda_s \right).$$

provided that λ_k is invertible, $1 \le k \le j-1$. From now on, consider the commutation constants to be invertible.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

ntroduction

n-Lie algebras
The n-LA of Jacobians

The n-HLA of Jacobians

A proper generalization Twisted derivations Generalized Jacobian (σ, τ, n) -HLAs

> lore general ommutation rules

General Leibniz-type rules

General Leibniz-type rules

$$[x_{1}, \dots, x_{n}]_{g} D_{j} =$$

$$\begin{vmatrix} x_{1}\sigma D_{1}\lambda_{1} & \dots & x_{1}\sigma D_{j-1}\lambda_{j-1} & x_{1}\sigma D_{j}\lambda_{j} & x_{1}\sigma D_{j+1}\lambda_{j+1} & \dots & x_{1}\sigma D_{n}\lambda_{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{i-1}\sigma D_{1}\lambda_{1} & \dots & x_{i-1}\sigma D_{j-1}\lambda_{j-1} & x_{i-1}\sigma D_{j}\lambda_{j} & x_{i-1}\sigma D_{j+1}\lambda_{j+1} & \dots & x_{i-1}\sigma D_{n}\lambda_{n} \\ x_{i}D_{j}D_{1}\gamma_{j1} & \dots & x_{i}D_{j}D_{j-1}\gamma_{jj-1} & x_{i}D_{j}D_{j} & x_{i}D_{j}D_{j}\gamma_{jj+1} & \dots & x_{i}D_{j}D_{n}\gamma_{jn} \\ x_{i+1}\tau D_{1}\lambda_{1} & \dots & x_{i+1}\tau D_{j-1}\lambda_{j-1} & x_{i+1}\tau D_{j}\lambda_{j} & x_{i+1}\tau D_{j+1}\lambda_{j+1} & \dots & x_{i+1}\tau D_{n}\lambda_{n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ x_{n}\tau D_{1}\lambda_{1} & \dots & x_{n}\tau D_{j-1}\lambda_{j-1} & x_{n}\tau D_{j}\lambda_{j} & x_{n}\tau D_{j+1}\lambda_{j+1} & \dots & x_{n}\tau D_{n}\lambda_{n} \end{vmatrix}$$

$$= \sum_{i=1}^{n} \Delta_{ij} = \sum_{k=1}^{n} x_{i}D_{j}D_{k}(-1)^{i+k} \cdot [x_{1}\sigma, \dots, x_{i-1}\sigma, x_{i+1}\tau, \dots, x_{n}\tau]_{g}^{(k)} \left(\gamma_{jk} \prod_{s \neq k} \lambda_{s}\right)$$

• We are, thus, very interested in the $(\gamma_{jk} \prod \lambda_s) =: \Gamma_{jk}$.

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

General Leibniz-type rules

Particular approach

The last case explored will be if Γ_{jk} does not depend on k. If that is the case and \mathcal{A} is a domain, then for all $l \neq j, k$,

$$\gamma_{jk} = \lambda_k \lambda_j^{-1}, \gamma_{jk} \lambda_k^{-1} = \gamma_{jl} \lambda_l^{-1}, \text{ but most importantly, } \Gamma_j = \prod_{s \neq j} \lambda_s.$$

This condition is very restrictive. Nonetheless, it still gives certain properties.

Proposition (GKS, Proposition 15)

Let \mathcal{A} be a commutative associative algebra, $\lambda_i \in \mathcal{A}$, σ and τ two linear maps, D_1, \ldots, D_n pairwise different (σ, τ) -derivations of \mathcal{A} such that $D_i \sigma = \sigma D_i \cdot \lambda_i$ and $D_i \tau = \tau D_i \cdot \lambda_i$ for all i and $D_k D_j = D_j D_k \cdot \gamma_{jk}$, $\gamma_{jk} = \lambda_k \lambda_j^{-1}$ for all k. Each D_j is a generalized (σ, τ) -derivation with respect to the generalized Jacobian, with the following Leibniz-type rule:

$$[x_1,\ldots,x_n]_g D_j = \Gamma_j \cdot \sum_{i=1}^n [x_1\sigma,\ldots,x_{i-1}\sigma,x_iD_j,x_{i+1}\tau,\ldots,x_n\tau]_g.$$

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

Introduction

The n-LA of Jacobians

The n-HLA of Jacobians

A proper generalization Twisted derivations

Generalized Jacobian $(\sigma, \, au, \, n)$ -HLAs

mmutation rules

eral Leibniz-type rules

State of the art

Theorem (GKS, Theorem 12)

Let Δ_s be the following sum of determinants:

$$\sum_{\substack{s=2\\i=1}}^{n} \begin{vmatrix} x_{1}\sigma D_{1} & \dots & x_{1}\sigma D_{n} \\ \vdots & & \vdots \\ [x_{i}\sigma, y_{2}\sigma, y_{s-1}\sigma, \dots, y_{s}D_{1}, y_{s+1}\tau, \dots, y_{n}\tau]_{g} & \dots & [x_{i}\sigma, y_{2}\sigma, y_{s-1}\sigma, \dots, y_{s}D_{n}, y_{s+1}\tau, \dots, y_{n}\tau]_{g} \\ \vdots & & \vdots \\ x_{n}\tau D_{1} & \dots & x_{n}\tau D_{n} \end{vmatrix} \Gamma_{i}.$$

If $\Delta_s = 0$, then $(A, [\star, \dots, \star]_g, \sigma, \tau)$ is a (σ, τ, n) -Hom-Lie algebra with Jacobi-type identity given by

$$[[x_1, \ldots, x_n]_g, y_2\tau, \ldots, y_n\tau]_g = \sum_{i=1}^n [x_1\sigma, \ldots, x_{i-1}\sigma, [x_i, y_2, \ldots, y_n]_g, x_{i+1}\tau, \ldots, x_n\tau]_g.$$

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

Introduction

n-Lie algebras

The n-LA of Jacobians

The n-HLA of Jacobians

A proper generalization
Twisted derivations
Generalized Jacobian

re general nmutation rules

neral Leibniz-type rules ne last case

State of the art

Thank you

Thank you!

A Lie-type construction based on twisted derivations

German Garcia Butenegro Sergei Silvestrov Abdennour Kitouni

References

n-Lie algebras

The n-HLA of

A proper generalization
Twisted derivations
Generalized Jacobian

Aore general ommutation rule

eneral Leibniz-type

One last case

State of the art