A hom-associative Stafford's theorem?

Johan Richter

BTH

SNAG 2024, March 22

Johan Richter A hom-associative Stafford's theorem?

Joint work with Per Bäck (MDU). arXiv: *Ideals in hom-associative Weyl algebras*, 2403.00104

()

Stafford's theorem says that every one-sided ideal in the Weyl algebras A_n over a field of characteristic zero is generated by two elements.

Strengthening of the fact that the A_n are Noetherian. We wanted a hom-associative version of Stafford's theorem.

Hom-associative rings

A hom-associative ring (R, α) is a non-associative ring R together with an additive function $\alpha : R \to R$ such that

$$\alpha(a)(bc) = (ab)\alpha(c)$$

for all $a, b, c \in R$.

Introduced by Makhlouf and Silvestrov. Connection with Hom-Lie algebras which were defined earlier by Hartwig, Larsson and Silvestrov.

Include the non-associative rings as a special case with $\alpha \equiv 0$.

Yau twist

Theorem ([3, 4])

Let A be an associative algebra and let α be an algebra endomorphism on A. Define a new product * on A by $a * b := \alpha(ab)$ for any $a, b \in A$. Then A with product *, called the Yau twist of A, is a hom-associative algebra with twisting map α .

The old identity element, 1_A , now satisfies $1_A * a = a * 1_A = \alpha(a)$.

Weyl algebras

The *nth Weyl algebra*, A_n , over a field K of characteristic zero is the free, associative, and unital algebra with generators x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n , $K\langle x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \rangle$, modulo the commutation relations

$$\begin{aligned} x_i x_j &= x_j x_i \text{ for all } i, j \in \{1, 2, \dots, n\}, \\ y_i y_j &= y_j y_i \text{ for all } i, j \in \{1, 2, \dots, n\}, \\ x_i y_j &= y_j x_i \text{ for all } i, j \in \{1, 2, \dots, n\} \text{ such that } i \neq j, \\ x_i y_i &= y_i x_i + 1 \text{ for all } i \in \{1, 2, \dots, n\}. \end{aligned}$$

First Hom-associative Weyl algebra

In [1], a family of *hom-associative Weyl algebras* $\{A_1^k\}_{k\in K}$ was constructed as a generalization of A_1 to the hom-associative setting. The definition of A_1^k is as follows: Let α_k be the *K*-automorphism on A_1 defined by $\alpha_k(x) := x$, $\alpha_k(y) := y + k$, and $\alpha_k(1_{A_1}) := 1_{A_1}$ for any $k \in K$. The *first hom-associative Weyl algebra* A_1^k is the Yau twist of A_1 by α_k . In the same article it is proven that A_1^k is simple. In [2], the study of A_1^k was continued. The morphisms and derivations on A_1^k were characterized, and an analogue of the famous *Dixmier conjecture*, first introduced by Dixmer, was proven. It was also shown that A_1^k is a formal deformation of A_1 with k as deformation parameter, this in contrast to the associative setting where A_1 is formally rigid and thus cannot be formally deformed.

Higher hom-associaive Weyl algebras

Let *K* be a field of characteristic zero and let $k = (k_1, k_2, ..., k_n) \in K^n$. Define the *K*-automorphism α_k on A_n by $\alpha_k(x_i) := x_i$, $\alpha_k(y_i) := y_i + k_i$, and $\alpha_k(1_{A_n}) := 1_{A_n}$ for $1 \le i \le n$. The *n*th hom-associative Weyl algebra A_n^k is the Yau twist of A_n by α_k .

Proposition

If I is a left (right) ideal of A_n , then I is a left (right) ideal of A_n^k if and only if $\alpha_k(I) \subseteq I$.

Proposition

Any left (right) ideal of A_n^k for $k_1k_2 \cdots k_n \neq 0$ is a left (right) ideal of A_n .

Proof that $\alpha_k(I) = I$

let I be a left ideal of A_n^k . If $0 \neq p \in I$, we claim that we can find an element $p' \in I$ such that $\deg_{x}(p') = \deg_{x}(p)$ and L(p') = 1. Now suppose $I \not\subseteq \alpha_k(I)$. Then there is at least one element in I that does not belong to $\alpha_k(I)$. Pick such an element, q, of lowest possible degree w.r.t. x_1, x_2, \ldots, x_n . Find an element $q' \in I$ such that $\deg_{x}(q') = \deg_{x}(q)$ and L(q') = 1. Set $r = \alpha_k^2(\alpha_k^{-2}(L(q))q') = \alpha_k(\alpha_k^{-2}(L(q)) * q')$. Note that $\deg_x(r) = \deg_x(q)$ and that L(r) = L(q). Since $\alpha_{k}^{-2}(L(q)) * q' \in I$, we have $r \in \alpha_{k}(I) \subseteq I$. Hence $q - r \in I$, and by the minimality of q, we must have $q - r \in \alpha_k(I)$. However, this would imply that also $q \in \alpha_k(I)$, which is a contradiction.

Hom-associative Stafford

Corollary

Any left (right) ideal of A_n^k is generated by two elements.

Proof.

Let *I* be a left ideal of A_n^k . Since *I* is also a left ideal of A_n , we know that it is generated as an ideal of A_n by two elements, say *p* and *q*. We want to show that $\alpha^{-1}(p)$ and $\alpha^{-1}(q)$ generate *I* as a left ideal of A_n^k . If $r \in I$, then there are $a, b \in A_n$ such that $r = ap + bq = \alpha(\alpha^{-1}(a)\alpha^{-1}(p) + \alpha^{-1}(b)\alpha^{-1}(q)) = \alpha^{-1}(a) * \alpha^{-1}(p) + \alpha^{-1}(b) * \alpha^{-1}(q)$. Clearly this shows that $\alpha^{-1}(p)$ and $\alpha^{-1}(q)$ generate *I* as a left ideal of A_n^k . The right case is similar.

So we have proven a hom-associative Stafford's theorem. But it turns out one can go further.

Lemma

For any $p \in A_n$, there are $q_1, q_2, \ldots, q_m \in A_n$ with $\deg_y(q_1) = \deg_y(q_2) = \cdots = \deg_y(q_m) = 0$, such that the left (right) ideal of A_n^k for $k_1k_2 \cdots k_n \neq 0$ generated by p equals the left (right) ideal of A_n^k generated by q_1, q_2, \ldots, q_m .

Theorem

Any left (right) ideal of A_n^k for $k_1k_2 \cdots k_n \neq 0$ is principal.

Proof.

Let *I* be a left ideal of A_n^k . We know it is generated by elements p, q as a left ideal of A_n . By 2, we can find p_1, p_2, \ldots, p_ℓ and q_1, q_2, \ldots, q_m such that the p_i generate the same left ideal of A_n^k as p, the q_i generate the same left ideal of A_n^k as q, and $\deg_y(p_1) = \deg_y(p_2) = \cdots = \deg_y(p_\ell) = \deg_y(q_1) = \deg_y(q_2) = \cdots = \deg_y(q_m) = 0$. Clearly $p_1, p_2, \ldots, p_\ell, q_1, q_2, \ldots, q_m$ generate *I* as a left ideal of A_n^k . By **?** we are done. The right case is similar.

References I

- P. Bäck, J. Richter, and S. Silvestrov, *Hom-associative Ore extensions and weak unitalizations*,
- P. Bäck and J. Richter, On the hom-associative Weyl algebras, J. Pure Appl. Algebra 224(9) (2020).
- Y. Fregier and A. Gohr, *On unitality conditions for Hom-associative algebras*, arXiv:0904.4874.
- D. Yau, *Hom-algebras and Homology*, J. Lie Theory **19**(2) (2009), pp. 409–421.