The Ext-algebra of Standard Modules of Twisted Doubles

Mika Norlén Jäderberg

Linköping University

March 21, 2024

Conventions

Let \mathbb{k} be a fixed algebraically closed field.

Let Λ be a finite-dimensional \mathbb{k}-algebra.

Throughout, we will mainly work with finite-dimensional left modules.

Let $S(1), \ldots, S(n)$ be a complete list of non-isomorphic simple Λ-modules.

For each $S(i)$, let $P(i)$ be the projective cover of S_{i}.

Standard Modules

Let \leq be a partial ordering on the set $1, \ldots, n$.
Definition
The i 'th standard module of Λ with respect to \leq is given by the quotient:

$$
\Delta(i):=P(i) / \sum_{\substack{f: P(j) \rightarrow P(i) \\ i \nless j}} \operatorname{im}(f)
$$

We write $\mathcal{F}(\Delta)$ for the full subcategory of Λ-mod consisting of those modules M that admit filtrations:

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{m}=M
$$

with $M_{i+1} / M_{i} \cong \Delta\left(a_{i}\right)$ for some $1 \leq a_{i} \leq n$.

Quasi-Hereditary Algebras

Definition

A pair (Λ, \leq) is said to be quasi-hereditary if the following conditions are met:
(i) $\Lambda \wedge \in \mathcal{F}(\Delta)$
(ii) $\operatorname{End}_{\Lambda}(\Delta(i)) \cong \mathbb{k}$ for all i.

Examples include:

- Algebras associated to blocks of category \mathcal{O} of a semi-simple complex Lie algebra.
- All finite-dimensional algebras Λ with $\operatorname{gl} \cdot \operatorname{dim}(\Lambda) \leq 2$.
- Blocks of Schur algebras.

An algebra is said to be directed if it quasi-hereditary and all standard modules are simple.

Exact Borel Subalgebras

Assume that (Λ, \leq) is quasi-hereditary.

Definition

A subalgebra $B \subset \Lambda$ is called an exact Borel subalgebra provided that the following conditions are met:
(i) B has the same number of isoclasses of simple modules as Λ, and we fix an indexing $S_{B}(1), \ldots, S_{B}(n)$ of the simple B-modules.
(ii) (B, \leq) is directed.
(iii) The functor $\Lambda \otimes_{B}-: B$-mod $\rightarrow \Lambda$-mod is exact.
(iv) $\Lambda \otimes_{B} S_{B}(i) \cong \Delta(i)$ for all $1 \leq i \leq n$.

Observe that the image of $\Lambda \otimes_{B}$ - is contained in $\mathcal{F}(\Delta)$.

Δ-Subalgebras

There is also a kind of dual notion to Borel subalgebras:

Definition

A subalgebra $A \subset \Lambda$ is called a Δ-subalgebra provided that the following conditions are met:
(i) A has the same number of isoclasses of simple modules as Λ, and we fix an indexing $S_{A}(1), \ldots, S_{A}(n)$ of the simple A-modules.
(ii) (A, \geq) is directed.
(iii) $\operatorname{Res}_{A}^{\wedge}(\Delta(i)) \cong P_{A}(i)$ for all $1 \leq i \leq n$.

They are dual in the sense that Λ admits an exact Borel subalgebra if and only if $\Lambda^{\text {op }}$ admits a Δ-subalgebra.

Twisted Doubles I: Twisting Pairs

Let Q and Q^{\prime} be two quivers with equal vertex sets.
Definition
Let $\beta: j \rightarrow k$ be an arrow in Q and let $\alpha: i \rightarrow j$ be an arrow in Q^{\prime}. A twisting pair of (β, α) is a diagram:

where α^{\prime} is a path in Q^{\prime} and β^{\prime} is a path in Q. We write $\operatorname{Tw}(\beta, \alpha)$ for the set of all twisting pairs of β and α.

Twisted Doubles II: Twisting Relations

A labeling on $\left(Q, Q^{\prime}\right)$ is the choice of a function

$$
M_{\beta \alpha}: \operatorname{Tw}(\beta, \alpha) \rightarrow \mathbb{k}
$$

for each pair of arrows $\beta: j \rightarrow k$ in Q and $\alpha: i \rightarrow j$ in Q^{\prime}.

The values $M_{\beta \alpha}\left(\alpha^{\prime}, \beta^{\prime}\right)$ are called twisting constants.
We can form a new quiver $Q \sqcup Q^{\prime}$ by:

- The vertices are the vertices of Q (= vertices of $\left.Q^{\prime}\right)$.
- The set of arrows is the disjoint union of the arrow sets of Q and Q^{\prime}.

Twisted Doubles III: The Construction

Let $B=\mathbb{k} Q / I$ and $A=\mathbb{k} Q^{\prime} / I^{\prime}$ where Q and Q^{\prime} have equal vertex sets. Let M be a labeling on $\left(Q, Q^{\prime}\right)$.
Definition (König and $\mathrm{Xi}, 1998$)
The twisted double of B and A with respect to M is given by the path algebra of the quiver $Q \sqcup Q^{\prime}$ modulo the ideal generated by:

- All the relations in the ideals I and I^{\prime}.
- For each $\beta: j \rightarrow k$ in Q and $\alpha: i \rightarrow j$ in Q^{\prime}, take the twisting relation:

$$
\beta \alpha=\sum_{\left(\alpha^{\prime}, \beta^{\prime}\right) \in \operatorname{Tw}(\beta, \alpha)} M_{\beta \alpha}\left(\alpha^{\prime}, \beta^{\prime}\right) \cdot \alpha^{\prime} \beta^{\prime}
$$

We write $\mathcal{A}(B, A, M)$ for this algebra.

Twisted Doubles IV: An Example

Let $B=\mathbb{k} \mathbb{A}_{4}$ and let $A=B^{\mathbf{o p}}$.
Let $M=\mathbf{1}$ be the labeling on $\left(\mathbb{A}_{4}, \mathbb{A}_{4}^{\mathbf{o p}}\right)$ in which all twisting constants are equal to one.
Then $\mathcal{A}\left(\mathbb{k} \mathbb{A}_{4}, \mathbb{k}_{\mathbb{k}} \mathbb{A}_{4}^{\mathrm{op}}, \mathbf{1}\right)$ is given by the quiver:

$$
1 \stackrel{\beta_{1}}{\stackrel{\alpha_{1}}{\longleftrightarrow}} 2 \stackrel{\beta_{2}}{\stackrel{\alpha_{2}}{\longleftrightarrow}} 3 \stackrel{\beta_{3}}{\stackrel{\alpha_{3}}{\longleftrightarrow}} 4
$$

with relations:

- $\beta_{1} \alpha_{1}=\alpha_{2} \beta_{2}+\alpha_{2} \alpha_{3} \beta_{3} \beta_{2}$
- $\beta_{2} \alpha_{2}=\alpha_{3} \beta_{3}$
- $\beta_{3} \alpha_{3}=0$

Twisted Doubles V: Quasi-Heredity

Let \leq be a partial order on the vertices so that (B, \leq) and (A, \geq) are directed. Let M be a labeling on $\left(Q, Q^{\prime}\right)$.

Question: Is $(\mathcal{A}(B, A, M), \leq)$ quasi-hereditary with exact Borel subalgebra B and Δ-subalgebra A ?

By some general results due to [König, 1995], the answer to our question is yes if and only if the multiplication map:

$$
\mu: A \otimes_{S} B \rightarrow \mathcal{A}(B, A, M)
$$

is an isomorphism in S-mod- S, where S denotes the semi-simple subalgebra generated by the vertex idempotents.

Examples

Whether or not μ is an isomorphism has been resolved in the following situations:

- If $B=\mathbb{k} Q$ and $A=\mathbb{k} Q^{\prime}$ and M is any labeling, then μ is an isomorphism. Proven in part by Deng and Xi in 1995.
- If M is the labeling in which all twisting constants are zero then μ is an isomorphism. Proven by Deng and Xi in 1993.

Theorem (Norlén Jäderberg)

If B and A are monomial algebras, then there is a complete description of when μ is an isomorphism.

Remark. Not much is known about more general situations.

The Ext-algebra of Standard Modules

For a quasi-hereditary algebra, an important problem is understanding the category $\mathcal{F}(\Delta)$.

If Λ possesses an exact Borel subalgebra, then the functor $\Lambda \otimes_{B}-: B$-mod $\rightarrow \mathcal{F}(\Delta)$ enables the study of $\mathcal{F}(\Delta)$ in terms of B-modules.

Problem: Not every quasi-hereditary algebra admits an exact Borel subalgebra.

The Ext-algebra of Standard Modules

Theorem (König, Külshammer, Osvienko, 2014)
Every quasi-hereditary algebra is Morita equivalent to a quasihereditary algebra with an exact Borel subalgebra.

The algebra $\operatorname{Ext}^{*}(\Delta, \Delta)$ plays a crucial role in the construction of the new algebra.

In addition, the exact Borel subalgebra obtained in this way satisfies some additional regularity conditions that makes it extremely well-behaved.

This motivates the study of $\operatorname{Ext}^{*}(\Delta, \Delta)$ even for quasi-hereditary algebras where an exact Borel subalgebra is already present.

Main Theorem

Theorem (Norlén Jäderberg)

- Let $B=\mathbb{k} Q / I$ and $A=\mathbb{k} Q^{\prime} / I^{\prime}$ where Q and Q^{\prime} have equal vertex sets.
- Let M be a labeling on $\left(Q, Q^{\prime}\right)$.
- Let \leq be a partial order so that $(\mathcal{A}(B, A, M), \leq)$ is quasi-hereditary, B is an exact Borel subalgebra and A is a Δ-subalgebra.
Then there is an isomorphism of graded algebras:

$$
\operatorname{Ext}_{\mathcal{A}(B, A, M)}^{*}(\Delta, \Delta) \cong \mathcal{A}\left(\operatorname{Ext}_{B}^{*}(\mathbb{S}, \mathbb{S}), A^{\mathrm{op}}, \widehat{M}\right)
$$

for some labeling \widehat{M}. Here $\mathbb{S}:=\bigoplus_{i=1}^{n} S_{B}(i)$.

Some Remarks

Remark 1. Thuresson proved the formula in the special case where M is the zero labeling in 2022.

Remark 2. The induced labeling \widehat{M} need not be unique as it depends heavily on the choice of bases in $A^{\mathbf{o p}}$ and $\operatorname{Ext}_{B}^{*}(\mathbb{S}, \mathbb{S})$. Very little is known about when two different labelings give isomorphic twisted doubles.

Remark 3. The hardest step in applying our formula is finding a labeling \widehat{M}. However, in the case where B and A are monomial algebras, one can use the combinatorics of Anick chains to arrive at a nice formula for \widehat{M}.

Example

Recall the twisted double $\mathcal{A}\left(\mathbb{k}_{\mathbb{A}}, \mathbb{k}_{\mathbb{A}}^{\mathbf{o p}}, \mathbf{1}\right)$ from before.
A standard computation gives

$$
\operatorname{Ext}_{\mathbb{k} \mathbb{A}_{4}}^{*}(\mathbb{S}, \mathbb{S}) \cong \mathbb{k} \mathbb{A}_{4} / \operatorname{rad}\left(\mathbb{k} \mathbb{A}_{4}\right)^{2}
$$

and using the formula from the previous theorem, it can be shown that:

$$
\operatorname{Ext}_{\mathcal{A}\left(\mathbb{K} \mathbb{A}_{4}, \mathbb{k} \mathbb{A}_{4}^{\mathbf{o p}}, \mathbf{1}\right)}^{*}(\Delta, \Delta) \cong \mathcal{A}\left(\mathbb{k} \mathbb{A}_{4} / \operatorname{rad}\left(\mathbb{k} \mathbb{A}_{4}\right)^{2},{\left.\mathbb{k} \mathbb{A}_{4}, \mathbf{1}\right)}\right.
$$

Example

In other words, $\operatorname{Ext}_{\mathcal{A}\left(\mathbb{k A}_{4}, \mathbb{K A}_{4}^{\mathrm{op}}, \mathbf{1}\right)}^{*}(\Delta, \Delta)$ is given by the quiver:

$$
1 \xrightarrow[\alpha_{1}]{\stackrel{\beta_{1}}{\longrightarrow}} 2 \xrightarrow[\alpha_{2}]{\xrightarrow{\beta_{2}}} 3 \xrightarrow[\alpha_{3}]{\stackrel{\beta_{3}}{\longrightarrow}} 4
$$

with relations

$$
\begin{aligned}
& \beta_{2} \beta_{1}=0 \\
& \beta_{3} \beta_{2}=0
\end{aligned}
$$

$$
\checkmark \beta_{2} \alpha_{1}=\alpha_{2} \beta_{1}
$$

- $\beta_{3} \alpha_{2}=\alpha_{3} \beta_{2}$

Future Research: Twisted Tensor Products

Recall that the multiplication map

$$
\mu: A \otimes_{s} B \rightarrow \mathcal{A}(B, A, M)
$$

is an isomorphism in S-mod- S. In the proof of our formula for $\operatorname{Ext}^{*}(\Delta, \Delta)$, it is also shown that:

$$
\operatorname{Ext}_{\mathcal{A}(B, A, M)}^{*}(\Delta, \Delta) \cong A^{\mathrm{op}} \otimes \operatorname{Ext}_{B}^{*}(\mathbb{S}, \mathbb{S})
$$

in S-mod- S.

Moreover, the proof never really made use of the directedness of B and A, as well as many of the properties of quasi-hereditary algebras.

Twisted Tensor Products: An idea

This suggests that our formula is really just a special case of a much more general phenomenon.

Idea
Let S be an algebra and let A and B be two algebra objects in S-mod-S. Given a bimodule morphism:

$$
\tau: B \otimes_{S} A \rightarrow A \otimes_{s} B
$$

subject to some associativity and unitality axioms, we can define a multiplication on $A \otimes_{S} B$ by:

$$
A \otimes_{S} B \otimes_{S} A \otimes_{S} B \xrightarrow{1_{A} \otimes \tau \otimes_{B}} A \otimes_{S} A \otimes_{S} B \otimes_{S} B \xrightarrow{m_{A} \otimes m_{B}} A \otimes_{S} B
$$

This defines the structure of a unital algebra on $A \otimes_{s} B$.

Example

As an example, for $\mathcal{A}(B, A, M)$, the morphism τ corresponds to the composite:

$$
B \otimes_{S} A \xrightarrow{\mu^{\prime}} \mathcal{A}(B, A, M) \xrightarrow{\mu^{-1}} A \otimes_{S} B
$$

where μ^{\prime} is another multiplication map.
On arrows, this takes the form:

$$
\tau(\beta \otimes \alpha):=\sum_{\left(\alpha^{\prime}, \beta^{\prime}\right) \in \operatorname{Tw}(\beta, \alpha)} M_{\beta \alpha}\left(\alpha^{\prime}, \beta^{\prime}\right) \cdot\left(\alpha^{\prime} \otimes \beta^{\prime}\right)
$$

Conjecture

Question/Conjecture: Under which hypotheses on A, B, S, and τ, is there a morphism:

$$
\widehat{\tau}: \operatorname{Ext}_{B}^{*}(\mathbb{S}, \mathbb{S}) \otimes_{s} A^{\mathbf{o p}} \rightarrow A^{\mathbf{o p}} \otimes_{S} \operatorname{Ext}_{B}^{*}(\mathbb{S}, \mathbb{S})
$$

so that there is an isomorphism of graded algebras:

$$
\operatorname{Ext}_{A \otimes_{S} B}^{*}\left(A \otimes_{S} \mathbb{S}, A \otimes_{S} \mathbb{S}\right) \cong A^{\mathbf{o p}} \otimes_{S} \operatorname{Ext}_{B}^{*}(\mathbb{S}, \mathbb{S})
$$

References

嘈
Steffen König (1995)
Exact Borel subalgebras of quasi-hereditary algebras II
Communications in Algebra 23(6), 2331 - 2344.
目
Steffen König, Julian Külshammer, Sergiy Osvienko (2014)
Quasi-hereditary algebras, exact Borel subalgebras, A_{∞}-categories and boxes
Advances in Mathematics 262:546-592.
R Markus Thuresson (2022)
The Ext-algebra of standrad modules of dual extension algebras.
Journal of Algebra 606:529 - 564.
B
Changchang Xi (1998)
Twisted doubles of algebras I: Deformations and the Jones index Canadian Mathematical Society, Conference Proceedings 24:513-523.

The End

