Chain conditions for graded rings SNAG 2024

Patrik Lundström

University West

Talk based on

▶ P. Lundström, Chain conditions for rings with enough idempotents with applications to category graded rings. Accepted for publication in Communications in Algebra.

➤ Available at https://arxiv.org/abs/2204.01362

Noetherian and artinian

A ring is called left/right noetherian (artinian) if it satisfies the ascending (descending) chain condition on its poset of left/right ideals.

General motivating question

▶ When are graded rings noetherian/artinian?

Focused motivating questions

- ► Noetherian/artinian rings with enough idempotents?
- ► Gluing of noetherian/artinian results for monoid graded rings to obtain similar results for category graded rings?
- ► Already done in the case of separability (SNAG 2020):
 - J. Cala, P. Lundström and H. Pinedo, *Object-unital groupoid graded rings, crossed products and separability*, Comm. Algebra **49**:4, 1676–1696 (2021).

BACKGROUND

Hilbert's basis theorem (Hilbert 1890)

If R is an associative, unital and left/right noetherian ring, then the polynomial ring R[X] is left/right noetherian.

A skew Hilbert's basis theorem (Noether and Schmeidler 1920)

Suppose R is an associative and unital ring and let σ be a ring automorphism of R. If R is left/right noetherian, then the skew polynomial ring $R[X;\sigma]$ is left/right noetherian.

An Ore extension Hilbert's basis theorem (Cohn 1971; Faith 1973)

Suppose R is an associative and unital ring. Let σ be a ring automorphism of R and suppose δ is a σ -derivation of R. If R is left/right noetherian, then the Ore extension $R[X; \sigma, \delta]$ is left/right noetherian.

A hom-associative Hilbert's basis theorem (Bäck and Richter 2018)

Let R be a hom-associative and unital ring with twisting map α . Let σ be a ring automorphism of R and let δ be a σ -derivation that both commute with α . Extend α homogeneously to $R[X; \sigma, \delta]$. If R is left/right noetherian, then the nonassociative Ore extension $R[X; \sigma, \delta]$ is left/right noetherian.

A group G is called:

- noetherian if it satisfies the ascending chain condition on subgroups;
- artinian if it satisfies the descending chain condition on subgroups;
- ▶ torsion-free if the only element in G of finite order is the identity;
- polycyclic-by-finite if it has a finite length subnormal series

$$1 = G_0 \lhd G_1 \lhd \cdots \lhd G_n = G$$

with each factor G_{i+1}/G_i a finite group or an infinite cyclic group.

Theorem (Folklore)

Suppose R is an associative and unital ring and let G be a group. If the group algebra R[G] is left/right noetherian, then R is left/right noetherian and G is noetherian.

Theorem (Ivanov 1987)

There is a noetherian group G (or H) such that the group algebra K[G] (or K[H]), over any associative and unital ring K, is not left (or right) noetherian.

Theorem (Hall 1954)

Let R be an associative and unital ring and let G be a polycyclic-by-finite group. Then the group algebra R[G] is left/right noetherian if and only if R is left/right noetherian.

Open problem (Roseblade 1973)

Is there a group G, which is not polycyclic-by-finite, and an associative and unital ring R such that the group algebra R[G] is left or right noetherian?

Theorem (Strongly graded: Bell 1987. ϵ -strongly graded: Lännström 2020)

Suppose G is a polycyclic-by-finite group. Let S be an associative and unital epsilon-strongly G-graded ring with base ring R. Then S is left/right noetherian if and only if R is left/right noetherian.

Artinian results

Theorem (Connell 1963)

Suppose R is an associative and unital ring and G is a group. Then the group algebra R[G] is left/right artinian if and only if R is left/right artinian and G is finite.

Theorem (Zelmanov 1977)

Suppose R is an associative and unital ring and M is a monoid. Then the monoid algebra R[M] is left/right artinian if and only if R is left/right artinian and M is finite.

Theorem (Park 1979)

Suppose R is an associative and unital ring and α is a group homomorphism from a group G to $\operatorname{Aut}(R)$. Then the skew group algebra $R *_{\alpha} G$ is left/right artinian if and only if R is left/right artinian and G is finite.

Artinian results

Theorem (Nystedt, Öinert, Pinedo 2018)

Suppose α is a global unital action of a groupoid G on a nonassociative ring R. Then the skew groupoid algebra $R*_{\alpha}G$ is left/right artinian if and only if R is left/right artinian and $R_g = \{0\}$ for all but finitely many $g \in G^1$.

Theorem (Nystedt, Öinert, Pinedo 2018)

Suppose that α is a unital partial action of a groupoid G on an alternative ring R. Then the partial skew groupoid algebra $R *_{\alpha} G$ is left/right artinian if and only if R is left/right artinian and $R_g = \{0\}$ for all but finitely many $g \in G^1$.

Artinian group-graded rings?

- ► Passman has constructed an artinian twisted group ring with an infinite group.
- ➤ Thus, Connell's result does not hold for twisted group rings or, more generally, crossed products and group graded rings.
- ▶ Probably difficult in the general case!

Nevertheless

Theorem (Lännström 2020)

Suppose G is a torsion-free group. Let S be an associative and unital epsilon-strongly G-graded ring with base ring R. Then S is left/right artinian if and only if R is left/right artinian and $S_g = \{0\}$ for all but finitely many $g \in G$.

Theorem (Nastasescu and Van Oystaeyen ("Methods of graded rings")

Suppose G is a torsion-free group. Let S be an associative and unital G-graded ring with base ring R. Then S is left/right artinian if and only if R is left/right artinian and S is finitely generated as a left/right R-module.

The rest of this presentation

- ➤ Rings with enough idempotents having a complete set of idempotents which is *strong*.
- ► Categories which are hom-set strong.
- ► Hom-set-strongly category graded rings
- ➤ Skew category algebras defined by *hom-set* strong categories.

Enough idempotents

Recall that a ring S is said to have *enough* idempotents if there exists a set $\{e_i\}_{i\in I}$ of nonzero orthogonal idempotents in S, called a complete set of idempotents for S, such that

$$S = \bigoplus_{i \in I} Se_i = \bigoplus_{i \in I} e_i S.$$

Given $i, j \in I$, we put

$$S_{ij} := e_i S e_j$$
 $S_i := S_{ii}$ $S_0 := \bigoplus_{i \in I} S_i$

Strong complete set of idempotents

Suppose that S is a ring with enough idempotents.

Let $\{e_i\}_{i\in I}$ be a complete set of idempotents for S.

Proposition

The following properties are equivalent:

- ▶ $\forall (i,j,k) \in I \times I \times I$ if two of the additive groups S_{ij} , S_{jk} and S_{ik} are nonzero, then the third one is also nonzero and $S_{ij}S_{jk} = S_{ik}$;
- ▶ $\forall (p,q) \in I \times I$ if one of the additive groups S_{pq} and S_{qp} is nonzero, then the other one is also nonzero and $S_{pq}S_{qp} = S_p$;

Definition

If $\{e_i\}_{i\in I}$ satisfies any of the two equivalent properties above, then we say that $\{e_i\}_{i\in I}$ is a *strong* complete set of idempotents for S.

Theorem 1

Suppose S is a ring with enough idempotents. Let $\{e_i\}_{i\in I}$ be a complete set of idempotents for S.

- ▶ If S is left/right artinian (noetherian), then I is finite and for every $i \in I$ the ring S_i is left/right artinian (noetherian).
- ▶ Suppose $\{e_i\}_{i\in I}$ is strong. Then S is left/right artinian (noetherian) if and only if I is finite and for every $i \in I$ the ring S_i is left/right artinian (noetherian).

Example

Suppose K is a field. Let V be a nonzero K-vector space. Consider the ring

$$S = \left(\begin{array}{cc} K & V \\ 0 & K \end{array}\right)$$

Then S is a ring with enough idempotents where

$$\mathsf{e}_1 := \left(egin{array}{ccc} 1 & 0 \ 0 & 0 \end{array}
ight) \quad \mathsf{and} \quad \mathsf{e}_2 := \left(egin{array}{ccc} 0 & 0 \ 0 & 1 \end{array}
ight)$$

is a non-strong complete set of idempotents for S. The rings $S_1 \cong K$ and $S_2 \cong K$ are left/right artinian and noetherian. Let W be a K-vector subspace of V. Then

$$\begin{pmatrix} 0 & W \\ 0 & 0 \end{pmatrix}$$
 is both a left and a right ideal of S .

Therefore S is left (right) artinian/noetherian if and only if V is finite-dimensional.

Categories

- From now on, let G denote a small category (the collections of objects G_0 and morphisms G_1 are sets).
- lacktriangle The domain and codomain of $g\in G_1$ are denoted d(g) and c(g).
- lackbox We regard $G_0\subseteq G_1$. The identity morphism a o a is denoted a.
- ► $G_2 := \{(g,h) \in G_1 \times G_1 \mid d(g) = c(h)\}.$
- ▶ If $(g, h) \in G_2$, then the composition of g and h is written gh.
- ▶ $G(a,b) := \{g \in G_1 \mid g : b \to a\}$ and G(a) := G(a,a)
- ightharpoonup G is called a groupoid if all morphisms in G are isomorphisms.

Proposition

Suppose G is a small category. The following properties are equivalent:

- $\forall (a, b, c) \in G_0 \times G_0 \times G_0$ if two of the sets G(a, b), G(b, c) and G(a, c) are nonempty, then the third set is nonempty and G(a, b)G(b, c) = G(a, c);
- $\forall (x,y) \in G_0 \times G_0$ if one of the sets G(x,y) and G(y,x) is nonempty, then the other set is nonempty and G(x,y)G(y,x) = G(x);

Definition

If G satisfies any of the two equivalent properties above, then we say that G is a hom-set strong category.

Remark

- All groupoids are hom-set strong categories.
- ▶ Not all hom-set strong categories are groupoids.

Category graded rings

Let S be a ring which is G-graded. By this we mean that for every $g \in G_1$ there is an additive subgroup S_g of S such that

$$S = \bigoplus_{g \in G_1} S_g$$

and for all $g, h \in G_1$, the inclusion

$$S_gS_h\subseteq S_{gh}$$

holds, if $(g, h) \in G_2$, and $S_g S_h = \{0\}$, otherwise.

- ▶ S is called *strongly G*-graded if $S_g S_h = S_{gh}$ for all $(g,h) \in G_2$.
- ▶ If H is a subset of G, then put $S_H := \bigoplus_{h \in H} S_h$.

Category graded rings

▶ We say that the G-grading on S is object unital if for all $a \in G_0$ the ring S_a is unital and

$$1_{S_{c(g)}}s = s1_{S_{d(g)}} = s$$

for all $g \in \mathcal{G}_1$ and all $s \in \mathcal{S}_g$.

 \triangleright In that case, S is a ring with enough idempotents with

$$\{1_{S_a}\}_{a\in G_0}$$

as a complete set of idempotents.

Proposition

Suppose G is a hom-set strong category and let S be an object unital G-graded ring. Then the following properties are equivalent:

- ▶ $\forall (a, b, c) \in G_0 \times G_0 \times G_0$ if two of the groups $S_{G(a,b)}$, $S_{G(b,c)}$ and $S_{G(a,c)}$ are nonzero, then the third is also nonzero and $S_{G(a,b)}S_{G(b,c)} = S_{G(a,c)}$;
- ▶ $\forall (p,q) \in G_0 \times G_0$ if one of the groups $S_{G(p,q)}$ and $S_{G(q,p)}$ is nonzero, then the other one is also nonzero and $S_{G(p,q)}S_{G(q,p)} = S_{G(p)}$;
- ▶ The set $\{1_{S_a}\}_{a \in G_0}$ is a strong complete set of idempotents for S.

Definition

Let G be a hom-set strong category. Let S be an object unital G-graded ring. If S satisfies any of the three equivalent properties above, then we say that S is hom-set-strongly G-graded.

Theorem 2

Suppose S is an object unital G-graded ring.

- ▶ If S is left/right artinian (noetherian), then G_0 is finite and, for every $a \in G_0$, the ring $S_{G(a)}$ is left/right artinian (noetherian).
- ▶ Suppose G is a hom-set strong category and let S be hom-set-strongly G-graded. Then S is left/right artinian (noetherian) if and only if G_0 is finite and $S_{G(a)}$ is left/right artinian (noetherian) for all $a \in G_0$.

Proofs. This follows from Theorem 1.

Definition

We say that a groupoid G is polycyclic-by-finite (torsion-free) if for every $a \in G_0$ the group G(a) is polycyclic-by-finite (torsion-free).

Theorem 3

Suppose G is a groupoid. Let S be a ring which is G-graded and object unital.

- Let G be polycyclic-by-finite. Then S is left/right noetherian if and only if G_0 is finite and for every $a \in G_0$ the ring S_a is left/right noetherian.
- ▶ Let G be torsion-free and suppose S is strongly G-graded. Then S is left/right artinian if and only if G_0 is finite and for every $a \in G_0$ the ring S_a is left/right artinian and $S_{G(a)}$ is finitely generated as a left/right S_a -module.

Proofs. Use Theorem 2 and results for group graded rings.

Skew category algebras

- ▶ Let G be a category and let $R = \{R_a\}_{a \in G_n}$ be a collection of unital rings.
- ▶ Let $\alpha = {\alpha_g : R_{d(g)} \to R_{c(g)}}_{g \in G_1}$ be a collection of ring isomorphisms.
- ightharpoonup We say that lpha is a skew category system if lpha is a functor $G o \mathsf{Ring}$.
- We say that the associated skew category algebra $R *_{\alpha} G$ is the set of formal finite sums of elements of the form rg for $r \in R_{c(g)}$ and $g \in G_1$.
- ▶ Addition in $R *_{\alpha} G$ is defined by the relations

$$rg + r'g = (r + r')g$$
 for $r, r' \in R_{c(g)}$ and $g \in G_1$.

• Multiplication in $R *_{\alpha} G$ is defined by the additive extension of

$$rg \cdot r'h = r\alpha_g(r')gh$$
 for $r \in R_{c(g)}, r' \in R_{c(h)}$, when $(g,h) \in G_2$

and $rg \cdot r'h = 0$, when $(g, h) \notin G_2$.

Skew category algebras

- $ightharpoonup R*_{\alpha}G$ is G-graded if we put $(R*_{\alpha}G)_g=R_{c(g)}g$ for $g\in G_1$.
- ▶ With this grading $R *_{\alpha} G$ is strongly G-graded.
- ▶ The set $\{1_{R_a}a\}_{a\in G_0}$ is a complete set of idempotents for $R*_{\alpha}G$.
- ▶ If G is a groupoid (group, monoid), then $R *_{\alpha} G$ is called a skew groupoid (group, monoid) algebra.
- ▶ If all the rings in R coincide with a ring T and the ring isomorphisms in α are identity maps, then $R *_{\alpha} G$ is called a *category algebra* and is denoted by T[G].
- ▶ In that case, if G is groupoid (group, monoid), then T[G] is called a groupoid (group, monoid) algebra.

Proposition

The set $\{1_{R_a}a\}_{a\in G_0}$ is a strong complete set of idempotents for $R*_{\alpha}G$ if and only if the category G is hom-set strong. In that case, $R*_{\alpha}G$ is hom-set-strongly G-graded.

Theorem 4

Suppose G is hom-set strong. Then the skew category algebra $R *_{\alpha} G$ is left/right artinian (noetherian) if and only if G_0 is finite and for every $a \in G_0$ the skew monoid algebra $R_a *_{\alpha|_{G(a)}} G(a)$ is left/right artinian (noetherian).

Proofs. This follows from Theorem 2.

Corollary

- ▶ Suppose G is a groupoid. Then the skew groupoid algebra $R *_{\alpha} G$ is left/right artinian if and only if G is finite and every R_a , for $a \in G_0$, is left/right artinian.
- ▶ Suppose G is hom-set strong and let T be a unital ring. Then the category algebra T[G] is left/right artinian if and only if G is finite and T is left/right artinian.

Proofs. This follows from Theorem 4 and results by Park and Zelmanov.

Thank you for your attention!