A new perspective on the Cayley-Dickson construction: flipped polynomial rings

The 6th meeting of the Swedish Network for Algebra and Geometry, Linköping University, 2024

Per Bäck, <per. backəmdu.se>
March 21, 2024

Mälardalen University

Outline

I. Background and motivation
II. Non-commutative polynomial rings: Ore extensions
III. Non-associative Ore extensions
IV. Flipped polynomial rings
V. The Cayley-Dickson construction

Background and motivation

BACKGROUND AND MOTIVATION

This talk is based on joint work with M. Aryapoor (MDU); [AB24].
Conventions. All rings in this talk are unital, but not necessarily commutative. A non-associative ring is a ring which is not necessarily associative.

[^0]
BACKGROUND AND MOTIVATION

The Cayley-Dickson construction, attributed to A. Cayley [Cay45] and
L. E. Dickson [Dic19], generates new $*$-algebras out of old ones; e.g. $\mathbb{C}, \mathbb{H}, \mathbb{O}, \ldots$

However, the construction is mysterious! That of $\mathbb{C} \cong \mathbb{R}[X] /\left(X^{2}+1\right)$ and $\mathbb{H} \cong \mathbb{C}[X ; *] /\left(X^{2}+1\right)$ is not. Is there a class of polynomial rings lurking behind it all?

Non-commutative rings with a skewed or twisted multiplication; Hilbert's twist [Hil03]. Ore extensions were later introduced by \varnothing. Ore [Ore33].

Appear as universal enveloping algebras of Lie algebras, quantized coordinate rings of affine algebraic varieties, differential operator rings etc. Used e.g. in coding theory. Non-associative Ore extensions introduced in [NÖR18], are part of the answer to it all!

[^1]Non-commutative polynomial rings: Ore extensions

NON-COMMUTATIVE POLYNOMIAL RINGS: ORE EXTENSIONS

Definition (Ore extension)

Let S be a non-associative ring, $R \subseteq S$ with $1 \in R$. S is an Ore extension of R if these axioms hold:
(01) There is an $x \in S$ s.t. S is a free left R-module with basis $\left\{1, x, x^{2}, \ldots\right\}$;
(O2) $x R \subseteq R x+R$;
(O3) S is associative.
Let R be an associative ring with an endomorphism σ and a left σ-derivation δ :

$$
\delta(r s)=\sigma(r) \delta(s)+\delta(r) s, \quad \text { for any } r, s \in R
$$

The ordinary generalized polynomial ring $R[X ; \sigma, \delta]$ is $\left\{\sum_{i \in \mathbb{N}} r_{i} x^{i}: r_{i} \in R\right.$ zero for all but finitely many $\left.i \in \mathbb{N}\right\}$ with pointwise addition and

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\sum_{i \in \mathbb{N}}\left(r \pi_{i}^{m}(s)\right) X^{i+n}, \quad \text { for any } r, s \in R, m, n \in \mathbb{N},
$$

$\pi_{i}^{m}: R \rightarrow R$ the sum of all $\binom{m}{i}$ composition of i copies of σ and $m-i$ copies of δ.

Proposition

$R[X ; \sigma, \delta]$ is an Ore extension of R with $x=X$; every Ore extension of R is isomorphic to an ordinary generalized polynomial ring $R[X ; \sigma, \delta]$.

NON-COMMUTATIVE POLYNOMIAL RINGS: ORE EXTENSIONS

Theorem (Hilbert's basis theorem)

Let σ be an automorphism on R. If R is right (left) Noetherian, then so is $R[X ; \sigma, \delta]$.

Example

Let R be an associative ring. Then $R[X]=R\left[X ; i d_{R}, 0\right]$.
If R is an associative ring, $\sigma=\mathrm{id}_{R}$, we get a differential polynomial ring $R\left[X ; \mathrm{id}_{R}, \delta\right]$.

Example

Let K be a field. The first Weyl algebra is $K\langle X, Y\rangle /(X Y-Y X-1) \cong K[Y]\left[X ; \mathrm{id}_{K[Y]}, \mathrm{d} / \mathrm{d} Y\right]$.
In quantum physics, X and Y are position and momentum operators.
If $\delta=0$, we get a skew polynomial ring $R[X ; \sigma, 0]$, denoted by $R[X ; \sigma]$.

Example

Let $*: \mathbb{C} \rightarrow \mathbb{C}, u \mapsto u^{*}$ be complex conjugation. In $\mathbb{C}[X ; *], X u=u^{*} X$.
We have $\mathbb{C} \cong \mathbb{R}[X] /\left(X^{2}+1\right)$ and $\mathbb{H} \cong \mathbb{C}[X ; *] /\left(X^{2}+1\right)$.

Non-associative Ore extensions

Non-ASSOCIATIVE ORE EXTENSIONS

$$
\begin{aligned}
& \text { Definition (Associators, commutators etc.) } \\
& {[\cdot, \cdot]: R \times R \rightarrow R \text { is defined by }[r, s]:=r s-s r,} \\
& (\cdot, \cdot, \cdot): R \times R \times R \rightarrow R \text { is defined by }(r, s, t):=(r s) t-r(s t) \text { for any } r, s, t \in R \text {. } \\
& (A, B, C) \text { finite sums }(a, b, c) \text { with } a \in A, b \in B, c \in C \text { for } A, B, C \subseteq R \text {. } \\
& N_{l}(R):=\{r \in R:(r, s, t)=0 \text { for all } s, t \in R\} . N_{m}(R) \text { and } N_{r}(R) \text { defined similarly. } \\
& N(R):=N_{l}(R) \cap N_{m}(R) \cap N_{r}(R) . \\
& C(R):=\{r \in R:[r, s]=0 \text { for all } s \in R\} . \\
& Z(R):=C(R) \cap N(R) .
\end{aligned}
$$

Definition (Left R-module)

If R is a non-associative ring, a left R-module is an additive group M with a biadditive map $R \times M \rightarrow M,(r, m) \mapsto r m$ for any $r \in R$ and $m \in M$.

Non-AsSOCIATIVE ORE EXTENSIONS

Let R be a non-associative ring with additive maps $\boldsymbol{\sigma}, \boldsymbol{\delta}$ where $\boldsymbol{\sigma}(1)=1, \boldsymbol{\delta}(1)=0$. The generalized polynomial ring $R[X ; \sigma, \delta]$ is defined as in the associative case,

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\sum_{i \in \mathbb{N}}\left(r \pi_{i}^{m}(s)\right) X^{i+n}, \quad \text { for any } r, s \in R, m, n \in \mathbb{N}
$$

Definition (Non-associative Ore extension)

Let S be a non-associative ring, $R \subseteq S$ with $1 \in R$. S is a non-associative Ore extension of R if these axioms hold:
(N1) There is an $x \in S$ s.t. S is a free left R-module with basis $\left\{1, x, x^{2}, \ldots\right\}$;
(N2) $x R \subseteq R x+R$;
(N3) $(S, S, x)=(S, x, S)=\{0\}$.

Proposition ([NÖR18])

$R[X ; \sigma, \delta]$ is a non-associative Ore extension of R with $x=X$; every non-associative Ore extension of R is isomorphic to a generalized polynomial ring $R[X ; \sigma, \delta]$.

Theorem (Hilbert's basis theorem for non-associative Ore extensions [BR23])

Let σ be an additive bijection, $\sigma(1)=1$. If R is right Noetherian, then so is $R[X ; \sigma, \delta]$.
There is a left Noetherian ring R, a σ, and a δ s.t. $R[X ; \sigma, \delta]$ is not left Noetherian.

Flipped polynomial rings

FLIPPED POLYNOMIAL RINGS

Definition (Non-associative polynomial ring)

Let A be an additive group. A non-associative polynomial ring over A is the additive group $A[X]$ equipped with a non-associative ring structure.
$\{$ Non-associative polynomial rings over $A\} \longleftrightarrow$
$\left\{\right.$ Collections of biadditive maps $\ell_{m, n ; k}: A \times A \rightarrow A, m, n, k \in \mathbb{N}$, only finitely many $k \in \mathbb{N}$ s.t. $\left.\ell_{m, n ; k}(a, b) \neq 0\right\}$,

$$
\left(a x^{m}\right)\left(b x^{n}\right)=\sum_{k \in \mathbb{N}} \ell_{m, n ; k}(a, b) X^{k}
$$

Let $\tau: A \times A \rightarrow A \times A$ be the flip map, i.e. $\tau(a, b):=(b, a)$ for any $a, b \in A$.

Definition (Flipped non-associative polynomial ring)

Let S be a non-associative polynomial ring corresponding to a collection of $\ell_{m, n ; k}$. The flipped ditto $S^{f l}$ is the one corresponding to the collection of $\ell_{m, n ; k} \circ \tau^{n}$.

Note. Since $\ell_{m, n ; k} \circ \tau^{n} \circ \tau^{n}=\ell_{m, n ; k},\left(S^{f l}\right)^{f l}=S$, similarly to $\left(S^{\circ p}\right)^{\circ p}=S$.

FLIPPED POLYNOMIAL RINGS

Every generalized polynomial ring $R[X ; \sigma, \delta]$ now has a flipped cousin, $R[X ; \sigma, \delta]^{f \mid}$:

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\sum_{i \in \mathbb{N}} \tau_{n}\left(r, \pi_{i}^{m}(s)\right) x^{i+n},
$$

where

$$
\tau_{n}(r, s):= \begin{cases}r s & \text { if } n \text { is even, } \\ s r & \text { if } n \text { is odd. }\end{cases}
$$

Example

In $R[X]^{f 1}=R\left[X ; i d_{R}, 0\right]^{f 1},\left(r X^{m}\right)\left(s X^{n}\right)=\tau_{n}(r, s) X^{m+n}$, so $r(s X)=\left(r X^{0}\right)\left(s X^{1}\right)=(s r) X$.

FLIPPED POLYNOMIAL RINGS

Definition (Flipped non-associative Ore extension)

Let S be a non-associative ring, $R \subseteq S$ with $1 \in R$. S is a flipped non-associative Ore extension of R if these axioms hold:
(F1) There is an $x \in S$ s.t. S is a free left R-module with basis $\left\{1, x, x^{2}, \ldots\right\}$;
(F2) $x R \subseteq R x+R$;
(F3) The following identities hold for any $m, n \in \mathbb{N}$ and $r, s \in R$:

$$
\left(r x^{m+1}\right)\left(s x^{n}\right)=\left(\left(r x^{m}\right)\left(\sigma(s) x^{n}\right)\right) x+\left(r x^{m}\right)\left(\delta(s) x^{n}\right), \quad r\left(s x^{n}\right)=\tau_{n}(r, s) x^{n} .
$$

σ and δ are additive maps s.t. xr $=\sigma(r) x+\delta(r)$ for all $r \in R$; such exist by (F1) and (F2).

Proposition ([AB24])

$R[X ; \sigma, \delta]^{f 1}$ is a flipped non-associative Ore extension of R with $x=X$; every flipped non-associative Ore extension of R is isomorphic to a flipped generalized polynomial ring $R[X ; \sigma, \delta]^{f 1}$.

FLIPPED POLYNOMIAL RINGS

$$
\begin{aligned}
& \text { Proposition ([AB24]) } \\
& \text { If } S=R[X ; \sigma, \delta]^{f 1} \text {, then } \\
& \text { (i) } X \in N_{l}(S) \text { iff } \sigma \text { is an endomorphism and } \delta \text { is both a left and a right } \sigma \text {-derivation; } \\
& \text { (ii) } X \in N_{m}(S) \text { iff im }\left(\delta^{n} \circ \sigma\right) \subseteq C(R) \text { for any } n \in \mathbb{N} \text {; } \\
& \text { (iii) } X \in N_{r}(S) \text { iff } R \text { is commutative. }
\end{aligned}
$$

Proposition ([AB24])

$R[X ; \sigma, \delta]^{f 1}$ is associative iff R is associative and commutative, σ is an endomorphism and δ is a left and a right σ-derivation.

Theorem (Hilbert's basis theorem for flipped non-associative Ore extensions [AB24])
Let σ be an additive bijection, $\sigma(1)=1$. If R is right Noetherian, then so is $R[X ; \sigma, \delta]^{f \mid}$.
There is a left Noetherian ring R, a σ, and a δ s.t. $R[X ; \sigma, \delta]^{\mathrm{fl}}$ is not left Noetherian.

The Cayley-Dickson construction

The Cayley-Dickson construction

A *-algebra A is a non-associative algebra over an associative, commutative ring K with an involution $*: A \rightarrow A, a \mapsto a^{*}\left((a b)^{*}=b^{*} a^{*},\left(a^{*}\right)^{*}=a\right.$ for any $\left.a, b \in A\right)$.

Let $\mu \in K$ where for all $a \in A, k \in K, \mu a=0 \Longrightarrow a=0$ and $k A=0 \Longrightarrow k=0$. The Cayley double of A, $\operatorname{Cay}(A, \mu)$, is $A \oplus A$ where for all $a, b, c, d \in A$,

$$
\begin{aligned}
&(a, b)(c, d): \\
&(a, b)^{*}:=\left(a c+\mu d^{*} b, d a+b c^{*}\right) \\
&
\end{aligned}
$$

Example

Start with $*=\mathrm{id}_{K}$ on $K=\mathbb{R}$, choose $\mu= \pm 1$ and then double:

$$
\begin{array}{ll}
\operatorname{Cay}(\mathbb{R},-1) \cong \mathbb{C}, & \operatorname{Cay}(\mathbb{R},+1) \cong \mathbb{C}^{\prime} \\
\operatorname{Cay}(\mathbb{C},-1) \cong \mathbb{H}, & \operatorname{Cay}\left(\mathbb{C}^{\prime},+1\right) \cong \mathbb{H}^{\prime} \\
\operatorname{Cay}(\mathbb{H},-1) \cong \mathbb{O}, & \operatorname{Cay}\left(\mathbb{H}^{\prime},+1\right) \cong \mathbb{O}^{\prime},
\end{array}
$$

The Cayley-Dickson construction

Any non-associative $*$-algebra A gives rise to a flipped skew polynomial ring $A[X ; *]^{f 1}$,

$$
\left(a x^{m}\right)\left(b X^{n}\right)=\tau_{n}\left(a, *^{m}(b)\right) x^{m+n}, \quad \text { for any } a, b \in A, m, n \in \mathbb{N}
$$

We can make $A[X ; *]^{f 1} a *$-algebra by extending *,

$$
\left(a_{0}+a_{1} X+a_{2} x^{2}+\cdots\right)^{*}:=a_{0}^{*}-a_{1} X+a_{2}^{*} X^{2}-\cdots, \quad \text { for any } a_{0}, a_{1}, a_{2}, \ldots \in A
$$

If $*$ is nontrivial, $2 A \neq 0$, and A contains no zero divisors, there is only one more way:

$$
\left(a_{0}+a_{1} X+a_{2} X^{2}+\cdots\right)^{*}:=a_{0}^{*}+a_{1} X+a_{2}^{*} X^{2}+\cdots, \quad \text { for any } a_{0}, a_{1}, a_{2}, \ldots \in A
$$

Theorem ([AB24])

$\operatorname{Cay}(A, \mu)$ and $A[X ; *]^{f 1} /\left(X^{2}-\mu\right)$ are isomorphic as $*$-algebras.
In particular, we can now see the (non-)dark side of the moon:

$$
\begin{array}{ll}
\mathbb{C} \cong \mathbb{R}[X] /\left(X^{2}+1\right), & \mathbb{C}^{\prime} \cong \mathbb{R}[X] /\left(X^{2}-1\right), \\
\mathbb{H} \cong \mathbb{C}[X ; *] /\left(X^{2}+1\right), & \mathbb{H}^{\prime} \cong \mathbb{C}^{\prime}[X ; *] /\left(X^{2}-1\right), \\
\mathbb{O} \cong \mathbb{H}[X ; *]^{\mathrm{f}} /\left(X^{2}+1\right), & \mathbb{O}^{\prime} \cong \mathbb{H}^{\prime}[X ; *]^{\mathrm{fl}} /\left(X^{2}-1\right),
\end{array}
$$

The Cayley-Dickson construction

We can view $A[t]$ as a non-associative $*$-algebra over $K[t]$ by letting $t^{*}:=t$.

Theorem ([AB24])

$\operatorname{Cay}(A[t], t)$ and $A[X ; *]^{f 1}$ are isomorphic as *-algebras.
A is flexible if $(a, b, a)=0$, and alternative if $(a, a, b)=(b, a, a)=0$ for all $a, b \in A$.
We get counterparts to classical results on Cayley-Dickson algebras by K. McCrimmon [McC85]:

Theorem ([AB24])

If $B=A[X ; *]^{f \mid}$, then the following assertions hold:
(i) The involution on B is trivial iff the involution * on A is trivial and $2 A=0$;
(ii) B is commutative iff A is commutative with trivial involution;
(iii) B is associative iff A is associative and commutative;
(iv) B is alternative iff A is alternative, $a a^{*}$ commute with A, and $2 a+a^{*} \in N(A)$ for all $a \in A$;
(v) B is flexible iff A is flexible, $a a^{*}$ commute with A, and $(a, b, c)=\left(a, b^{*}, c^{*}\right)$ for all $a, b, c \in A$.

[^2]
The Cayley-Dickson construction

Let $C_{*}(A):=\left\{a \in C(A): a^{*}=a\right\}$ and $Z_{*}(A):=\left\{a \in Z(A): a^{*}=a\right\}$.

Theorem ([AB24])

If $B=A[X ; *]^{f 1}$, then the following equalities hold:
(i) $C(B)=\left\{\sum_{i \in \mathbb{N}} a_{i} x^{i}: a_{i} \in C_{*}(A), a_{2 i+1} b^{*}=a_{2 i+1} b \forall b \in A, i \in \mathbb{N}\right\}$;
(ii) $N_{l}(B)=N_{r}(B)=\left\{\sum_{i \in \mathbb{N}} a_{i} X^{i}: a_{2 i} \in Z(A), a_{2 i+1} \in C(A) \cap N_{m}(A)\right.$,

$$
\left.\left(a_{2 i+1} b\right) c=a_{2 i+1}(c b),(b c) a_{2 i+1}=c\left(b a_{2 i+1}\right) \forall b, c \in A, i \in \mathbb{N}\right\} ;
$$

(iii) $N_{m}(B)=\left\{\sum_{i \in \mathbb{N}} a_{i} x^{i}: a_{2 i} \in C(A) \cap N_{m}(A), a_{2 i+1} \in C(A)\right.$,

$$
\left.\left(a_{2 i+1} b\right) c=\left(a_{2 i+1} c\right) b, b\left(c a_{2 i+1}\right)=c\left(b a_{2 i+1}\right) \forall b, c \in A, i \in \mathbb{N}\right\} ;
$$

(iv) $N(B)=\left\{\sum_{i \in \mathbb{N}} a_{i} x^{i}: a_{i} \in Z(A), a_{2 i+1}[A, A]=0 \forall i \in \mathbb{N}\right\}$;
(v) $Z(B)=\left\{\sum_{i \in \mathbb{N}} a_{i} x^{i}: a_{i} \in Z_{*}(A), a_{2 i+1} b^{*}=a_{2 i+1} b \forall b \in A, i \in \mathbb{N}\right\}$.

The Cayley-Dickson construction

Corollary ([AB24])

If $B=A[X ; *]^{f 1}, 1 / 2 \in K$, and A is obtained from K by n repeated applications of the Cayley-Dickson process, then the following equalities hold:
(i) $C(B)=Z(B)=\left\{\begin{array}{ll}K[X] & \text { if } n=0, \\ K\left[X^{2}\right] & \text { if } n \geq 1 .\end{array}\right.$;
(ii) $Z_{*}(B)=K\left[X^{2}\right]$;
(iii) $N(B)= \begin{cases}B & \text { if } 0 \leq n \leq 1, \\ K\left[X^{2}\right] & \text { if } n \geq 2 .\end{cases}$

Thank you!

[^0]: [AB24] M. Aryapoor and P. Bäck. "Flipped non-associative polynomial rings and the Cayley-Dickson construction". In: arXiv:2403.03763 (2024).

[^1]: [Cay45] A. Cayley. "On Jacobi's elliptic functions, in reply to Rev. B. Bronwin; and on quaternions". In: Philos. Mag. 26.3 (1845).
 [Dic19] L. E. Dickson. "On quaternions and their generalization and the history of the eight square theorem". In: Ann. Math 20.3 (1919).
 [Hil03] D. Hilbert. Grundlagen der Geometrie. Leipzig: Teubner, 1903.
 [Ore33] 0. Ore. "Theory of non-commutative polynomials". In: Ann. Math 34.3 (1933).
 [NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". In: Isr. J. Math. 224.1 (2018).

[^2]: [McC85] K. McCrimmon. "Nonassociative algebras with scalar involution". In: Pacific J. Math. 116.1 (1985).

