A new perspective on the Cayley–Dickson construction: flipped polynomial rings

The 6th meeting of the Swedish Network for Algebra and Geometry, Linköping University, 2024

Per Bäck, <per.back@mdu.se> March 21, 2024

Mälardalen University

I. Background and motivation

II. Non-commutative polynomial rings: Ore extensions

III. Non-associative Ore extensions

IV. Flipped polynomial rings

V. The Cayley–Dickson construction

Background and motivation

This talk is based on joint work with M. Aryapoor (MDU); [AB24].

Conventions. All rings in this talk are unital, but not necessarily commutative. A *non-associative ring* is a ring which is not necessarily associative.

[[]AB24] M. Aryapoor and P. Bäck. "Flipped non-associative polynomial rings and the Cayley–Dickson construction". In: arXiv:2403.03763 (2024).

The Cayley–Dickson construction, attributed to A. Cayley [Cay45] and L. E. Dickson [Dic19], generates new *-algebras out of old ones; e.g. $\mathbb{C}, \mathbb{H}, \mathbb{O}, \ldots$

However, the construction is mysterious! That of $\mathbb{C} \cong \mathbb{R}[X]/(X^2 + 1)$ and $\mathbb{H} \cong \mathbb{C}[X; *]/(X^2 + 1)$ is not. Is there a class of polynomial rings lurking behind it *all*?

Non-commutative rings with a *skewed* or *twisted* multiplication; *Hilbert's twist* [Hil03]. *Ore extensions* were later introduced by Ø. Ore [Ore33].

Appear as universal enveloping algebras of Lie algebras, quantized coordinate rings of affine algebraic varieties, *differential operator rings* etc. Used e.g. in coding theory.

Non-associative Ore extensions introduced in [NÖR18], are part of the answer to it all!

[[]Cay45] A. Cayley. "On Jacobi's elliptic functions, in reply to Rev. B. Bronwin; and on quaternions". In: *Philos. Mag.* 26.3 (1845).

[[]Dic19] L. E. Dickson. "On quaternions and their generalization and the history of the eight square theorem". In: Ann. Math 20.3 (1919).

[[]Hil03] D. Hilbert. Grundlagen der Geometrie. Leipzig: Teubner, 1903.

[[]Ore33] O. Ore. "Theory of non-commutative polynomials". In: Ann. Math 34.3 (1933).

[[]NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". In: Isr. J. Math. 224.1 (2018).

Non-commutative polynomial rings: Ore extensions

NON-COMMUTATIVE POLYNOMIAL RINGS: ORE EXTENSIONS

Definition (Ore extension)

Let S be a non-associative ring, $R \subseteq S$ with $1 \in R$. S is an Ore extension of R if these axioms hold:

(O1) There is an $x \in S$ s.t. S is a free left R-module with basis $\{1, x, x^2, \ldots\}$;

 $(O2) \ xR \subseteq Rx + R;$

(O3) S is associative.

Let *R* be an associative ring with an endomorphism σ and a *left* σ -*derivation* δ :

 $\delta(rs) = \sigma(r)\delta(s) + \delta(r)s$, for any $r, s \in R$.

The ordinary generalized polynomial ring $R[X; \sigma, \delta]$ is $\left\{ \sum_{i \in \mathbb{N}} r_i \chi^i : r_i \in R \text{ zero for all but finitely many } i \in \mathbb{N} \right\}$ with pointwise addition and

$$(rX^m)(sX^n) = \sum_{i \in \mathbb{N}} (r\pi_i^m(s)) X^{i+n}, \text{ for any } r, s \in \mathbb{R}, m, n \in \mathbb{N}.$$

 $\pi_i^m : R \to R$ the sum of all $\binom{m}{i}$ composition of *i* copies of σ and m - i copies of δ .

Proposition

 $R[X; \sigma, \delta]$ is an Ore extension of R with x = X; every Ore extension of R is isomorphic to an ordinary generalized polynomial ring $R[X; \sigma, \delta]$.

Theorem (Hilbert's basis theorem)

Let σ be an automorphism on R. If R is right (left) Noetherian, then so is R[X; σ , δ].

Example

Let *R* be an associative ring. Then $R[X] = R[X; id_R, 0]$.

If R is an associative ring, $\sigma = id_R$, we get a differential polynomial ring $R[X; id_R, \delta]$.

Example

Let K be a field. The first Weyl algebra is $K(X, Y)/(XY - YX - 1) \cong K[Y][X; id_{K[Y]}, d/dY]$. In quantum physics, X and Y are position and momentum operators.

If $\delta = 0$, we get a skew polynomial ring $R[X; \sigma, 0]$, denoted by $R[X; \sigma]$.

Example

Let $*: \mathbb{C} \to \mathbb{C}$, $u \mapsto u^*$ be complex conjugation. In $\mathbb{C}[X; *]$, $Xu = u^*X$. We have $\mathbb{C} \cong \mathbb{R}[X]/(X^2 + 1)$ and $\mathbb{H} \cong \mathbb{C}[X; *]/(X^2 + 1)$. Non-associative Ore extensions

Definition (Associators, commutators etc.)

 $[\cdot, \cdot]: R \times R \to R$ is defined by [r, s] := rs - sr, $(\cdot, \cdot, \cdot): R \times R \times R \to R$ is defined by (r, s, t) := (rs)t - r(st) for any $r, s, t \in R$. (A, B, C) finite sums (a, b, c) with $a \in A, b \in B, c \in C$ for $A, B, C \subseteq R$.

 $N_l(R) := \{r \in R : (r, s, t) = 0 \text{ for all } s, t \in R\}$. $N_m(R)$ and $N_r(R)$ defined similarly. $N(R) := N_l(R) \cap N_m(R) \cap N_r(R)$.

 $C(R) := \{r \in R : [r, s] = 0 \text{ for all } s \in R\}.$ $Z(R) := C(R) \cap N(R).$

Definition (Left *R*-module)

If *R* is a non-associative ring, a *left R-module* is an additive group *M* with a biadditive map $R \times M \rightarrow M$, $(r, m) \mapsto rm$ for any $r \in R$ and $m \in M$.

NON-ASSOCIATIVE ORE EXTENSIONS

Let *R* be a **non-associative ring** with **additive maps** σ , δ where $\sigma(1) = 1$, $\delta(1) = 0$. The generalized polynomial ring *R*[X; σ , δ] is defined as in the associative case,

$$(rX^m)(sX^n) = \sum_{i \in \mathbb{N}} (r\pi_i^m(s))X^{i+n}, \text{ for any } r, s \in R, m, n \in \mathbb{N}.$$

Definition (Non-associative Ore extension)

Let *S* be a non-associative ring, $R \subseteq S$ with $1 \in R$. *S* is a *non-associative* Ore extension of *R* if these axioms hold:

(N1) There is an $x \in S$ s.t. S is a free left R-module with basis $\{1, x, x^2, \ldots\}$;

(N2) $xR \subseteq Rx + R;$

(N3)
$$(S,S,x) = (S,x,S) = \{0\}.$$

Proposition ([NÖR18])

 $R[X; \sigma, \delta]$ is a **non-associative** Ore extension of R with x = X; every **non-associative** Ore extension of R is isomorphic to a generalized polynomial ring $R[X; \sigma, \delta]$.

Theorem (Hilbert's basis theorem for non-associative Ore extensions [BR23]) Let σ be an additive bijection, $\sigma(1) = 1$. If R is right Noetherian, then so is $R[X; \sigma, \delta]$.

There is a left Noetherian ring *R*, a σ , and a δ s.t. $R[X; \sigma, \delta]$ is *not* left Noetherian.

[BR23] P. Bäck and J. Richter. "Hilbert's basis theorem and simplicity for non-associative skew Laurent polynomial rings and related rings". In: arXiv:2207.07994 (2023).

Flipped polynomial rings

Definition (Non-associative polynomial ring)

Let A be an additive group. A *non-associative polynomial ring over* A is the additive group A[X] equipped with a non-associative ring structure.

{Non-associative polynomial rings over A} \longleftrightarrow {Collections of biadditive maps $\ell_{m,n;k} : A \times A \to A, m, n, k \in \mathbb{N}$, only finitely many $k \in \mathbb{N}$ s.t. $\ell_{m,n;k}(a, b) \neq 0$ },

$$(aX^m)(bX^n) = \sum_{k \in \mathbb{N}} \ell_{m,n;k}(a,b)X^k.$$

Let $\tau: A \times A \to A \times A$ be the *flip map*, i.e. $\tau(a, b) := (b, a)$ for any $a, b \in A$.

Definition (Flipped non-associative polynomial ring)

Let *S* be a non-associative polynomial ring corresponding to a collection of $\ell_{m,n;k}$. The *flipped* ditto *S*^{fl} is the one corresponding to the collection of $\ell_{m,n;k} \circ \tau^n$.

Note. Since $\ell_{m,n;k} \circ \tau^n \circ \tau^n = \ell_{m,n;k}$, $(S^{fI})^{fI} = S$, similarly to $(S^{op})^{op} = S$.

Every generalized polynomial ring $R[X; \sigma, \delta]$ now has a flipped cousin, $R[X; \sigma, \delta]^{fl}$:

$$(rX^m)(sX^n) = \sum_{i\in\mathbb{N}} \tau_n(r,\pi_i^m(s))X^{i+n},$$

where

$$\tau_n(r,s) := \begin{cases} rs & \text{if } n \text{ is even,} \\ sr & \text{if } n \text{ is odd.} \end{cases}$$

Example In $R[X]^{f1} = R[X; id_R, 0]^{f1}$, $(rX^m)(sX^n) = \tau_n(r, s)X^{m+n}$, so $r(sX) = (rX^0)(sX^1) = (sr)X$.

Definition (Flipped non-associative Ore extension)

Let *S* be a non-associative ring, $R \subseteq S$ with $1 \in R$. *S* is a *flipped* non-associative Ore extension of *R* if these axioms hold:

- (F1) There is an $x \in S$ s.t. S is a free left R-module with basis $\{1, x, x^2, \ldots\}$;
- (F2) $xR \subseteq Rx + R;$
- (F3) The following identities hold for any $m, n \in \mathbb{N}$ and $r, s \in R$: $(rx^{m+1})(sx^n) = ((rx^m)(\sigma(s)x^n))x + (rx^m)(\delta(s)x^n), \quad r(sx^n) = \tau_n(r,s)x^n.$

 σ and δ are additive maps s.t. $xr = \sigma(r)x + \delta(r)$ for all $r \in R$; such exist by (F1) and (F2).

Proposition ([AB24])

 $R[X; \sigma, \delta]^{f_1}$ is a *flipped* non-associative Ore extension of R with x = X; every *flipped* non-associative Ore extension of R is isomorphic to a *flipped* generalized polynomial ring $R[X; \sigma, \delta]^{f_1}$.

Proposition ([AB24])

If $S = R[X; \sigma, \delta]^{fI}$, then

(i) $X \in N_l(S)$ iff σ is an endomorphism and δ is both a left and a right σ -derivation; (ii) $X \in N_m(S)$ iff $im(\delta^n \circ \sigma) \subseteq C(R)$ for any $n \in \mathbb{N}$;

(iii) $X \in N_r(S)$ iff R is commutative.

Proposition ([AB24])

 $R[X; \sigma, \delta]^{fI}$ is associative iff R is associative and commutative, σ is an endomorphism and δ is a left and a right σ -derivation.

Theorem (Hilbert's basis theorem for flipped non-associative Ore extensions [AB24]) Let σ be an additive bijection, $\sigma(1) = 1$. If R is right Noetherian, then so is $R[X; \sigma, \delta]^{f!}$.

There is a left Noetherian ring R, a σ , and a δ s.t. $R[X; \sigma, \delta]^{f1}$ is not left Noetherian.

The Cayley-Dickson construction

THE CAYLEY–DICKSON CONSTRUCTION

A *-algebra A is a non-associative algebra over an associative, commutative ring K with an involution $*: A \to A, a \mapsto a^* ((ab)^* = b^*a^*, (a^*)^* = a$ for any $a, b \in A$).

Let $\mu \in K$ where for all $a \in A$, $k \in K$, $\mu a = 0 \implies a = 0$ and $kA = 0 \implies k = 0$. The Cayley double of A, Cay(A, μ), is $A \oplus A$ where for all $a, b, c, d \in A$,

> $(a,b)(c,d) := (ac + \mu d^*b, da + bc^*),$ $(a,b)^* := (a^*, -b).$

Example

Start with $* = id_K$ on $K = \mathbb{R}$, choose $\mu = \pm 1$ and then double:

$Cay(\mathbb{R}, -1) \cong \mathbb{C},$	$Cay(\mathbb{R},+1) \cong \mathbb{C}'$
$Cay(\mathbb{C},-1)\cong\mathbb{H},$	$Cay(\mathbb{C}',+1)\cong\mathbb{H}'$
$Cay(\mathbb{H},-1)\cong\mathbb{O},$	$Cay(\mathbb{H}',+1)\cong\mathbb{O}'$

THE CAYLEY-DICKSON CONSTRUCTION

Any non-associative *-algebra A gives rise to a flipped skew polynomial ring $A[X; *]^{fl}$,

$$(aX^m)(bX^n) = \tau_n(a, *^m(b))X^{m+n}, \text{ for any } a, b \in A, m, n \in \mathbb{N}$$

We can make A[X; *]^{f1} a *-algebra by extending *,

$$(a_0 + a_1X + a_2X^2 + \cdots)^* := a_0^* - a_1X + a_2^*X^2 - \cdots, \text{ for any } a_0, a_1, a_2, \ldots \in A.$$

If * is nontrivial, $2A \neq 0$, and A contains no zero divisors, there is only one more way:

$$(a_0 + a_1X + a_2X^2 + \cdots)^* := a_0^* + a_1X + a_2^*X^2 + \cdots, \text{ for any } a_0, a_1, a_2, \ldots \in A.$$

Theorem ([AB24])

 $Cay(A, \mu)$ and $A[X; *]^{fl}/(X^2 - \mu)$ are isomorphic as *-algebras.

In particular, we can now see the (non-)dark side of the moon:

$$\begin{split} \mathbb{C} &\cong \mathbb{R}[X]/(X^2+1), & \mathbb{C}' &\cong \mathbb{R}[X]/(X^2-1), \\ \mathbb{H} &\cong \mathbb{C}[X;*]/(X^2+1), & \mathbb{H}' &\cong \mathbb{C}'[X;*]/(X^2-1), \\ \mathbb{O} &\cong \mathbb{H}[X;*]^{f_1}/(X^2+1), & \mathbb{O}' &\cong \mathbb{H}'[X;*]^{f_1}/(X^2-1) \end{split}$$

THE CAYLEY-DICKSON CONSTRUCTION

We can view A[t] as a non-associative *-algebra over K[t] by letting $t^* := t$.

Theorem ([AB24]) Cay(A[t], t) and A[X; *]^{f1} are isomorphic as *-algebras.

A is flexible if (a, b, a) = 0, and alternative if (a, a, b) = (b, a, a) = 0 for all $a, b \in A$.

We get counterparts to classical results on Cayley–Dickson algebras by K. McCrimmon [McC85]:

Theorem ([AB24])

If $B = A[X; *]^{f_1}$, then the following assertions hold:

- (i) The involution on B is trivial iff the involution * on A is trivial and 2A = 0;
- (ii) B is commutative iff A is commutative with trivial involution;
- (iii) B is associative iff A is associative and commutative;
- (iv) B is alternative iff A is alternative, aa^{*} commute with A, and 2a + a^{*} ∈ N(A) for all a ∈ A;
- (v) B is flexible iff A is flexible, aa^{*} commute with A, and (a, b, c) = (a, b^{*}, c^{*}) for all a, b, c ∈ A.

[[]McC85] K. McCrimmon. "Nonassociative algebras with scalar involution". In: Pacific J. Math. 116.1 (1985).

Let
$$C_*(A) := \{a \in C(A) : a^* = a\}$$
 and $Z_*(A) := \{a \in Z(A) : a^* = a\}$.

 $\begin{aligned} \text{Theorem ([AB24])} \\ If B &= A[X; *]^{f_1}, \text{ then the following equalities hold:} \\ (i) C(B) &= \left\{ \sum_{i \in \mathbb{N}} a_i X^i : a_i \in C_*(A), a_{2i+1} b^* = a_{2i+1} b \ \forall b \in A, i \in \mathbb{N} \right\}; \\ (ii) N_l(B) &= N_r(B) = \left\{ \sum_{i \in \mathbb{N}} a_i X^i : a_{2i} \in Z(A), a_{2i+1} \in C(A) \cap N_m(A), \\ (a_{2i+1}b)c &= a_{2i+1}(cb), (bc)a_{2i+1} = c(ba_{2i+1}) \ \forall b, c \in A, i \in \mathbb{N} \right\}; \\ (iii) N_m(B) &= \left\{ \sum_{i \in \mathbb{N}} a_i X^i : a_{2i} \in C(A) \cap N_m(A), a_{2i+1} \in C(A), \\ (a_{2i+1}b)c &= (a_{2i+1}c)b, b(ca_{2i+1}) = c(ba_{2i+1}) \ \forall b, c \in A, i \in \mathbb{N} \right\}; \\ (iv) N(B) &= \left\{ \sum_{i \in \mathbb{N}} a_i X^i : a_i \in Z(A), a_{2i+1}[A, A] = 0 \ \forall i \in \mathbb{N} \right\}; \\ (v) Z(B) &= \left\{ \sum_{i \in \mathbb{N}} a_i X^i : a_i \in Z_*(A), a_{2i+1} b^* = a_{2i+1} b \ \forall b \in A, i \in \mathbb{N} \right\}. \end{aligned}$

Corollary ([AB24])

If $B = A[X; *]^{f_1}$, $1/2 \in K$, and A is obtained from K by n repeated applications of the Cayley-Dickson process, then the following equalities hold:

(i)
$$C(B) = Z(B) = \begin{cases} K[X] & \text{if } n = 0, \\ K[X^2] & \text{if } n \ge 1. \end{cases}$$
;
(ii) $Z_*(B) = K[X^2]$;
(iii) $N(B) = \begin{cases} B & \text{if } 0 \le n \le 1, \\ K[X^2] & \text{if } n \ge 2. \end{cases}$

Thank you!