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Banach bundles

Let X be a locally compact Hausdor� space. By a Banach bundle over X we mean a pair
(B, p), consisting of a Hausdor� space B and a continuous open surjection p : B→ X,
along with operations and norms making each fiber Bx := p−1(x), x ∈ X, into a Banach
space, and satisfying the following conditions:

1. The map s 7→ ‖s‖ is continuous on B to R.
2. The map (s, t) 7→ s + t is continuous on {(s, t) ∈ B×B : p(s) = p(t)} to B.
3. For each λ ∈ C, the map s 7→ λs is continuous on B to B.
4. If x ∈ X and {si} is any net of elements in B such that ‖si‖ → 0 and p(si)→ x,

then si → 0x.



Banach bundles: Remarks

Condition 4. revised
Condition 4. is equivalent to the following condition: If x ∈ X, then the collection of all
subsets of B of the form {s ∈ B : p(s) ∈ U, ‖s‖ < ε}, where U is a neighbourhood of x in
X and ε > 0 is a basis of 0x in B.

Local triviality
1. Not all Banach bundles are locally trivial.
2. Condition 4. can be looked upon as a “fragment" of the property of local triviality.
3. It can be shown that a Banach bundle B whose fibers are all of the same finite

dimension is necessarily locally trivial.
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Fell bundles

Let (G, e) be a locally compact Hausdor� group. By a Fell bundle over G we mean a
Banach bundle (B, p) over G equipped with a continuous multiplication · : B×B→ B

and a continuous involution ∗ : B→ B satisfying the following conditions:

1. Bg · Bh ⊆ Bgh and the restriction · : Bg × Bh → Bgh is bilinear for all g, h ∈ G.

2. ‖st‖ 6 ‖s‖‖t‖ for all s, t ∈ B.

3. B∗g ⊆ Bg−1 and the restriction ∗ : Bg → Bg−1 is anti-linear for all g ∈ G.

4. (st)∗ = t∗s∗ for all s, t ∈ B.

5. (s∗)∗ = s for all s ∈ B.

6. ‖s∗s‖ = ‖s‖2 for all s ∈ B.

7. s∗s > 0 in Be for all s ∈ B.

The Fell bundle is called saturated in case span(Bg · Bh) is dense in Bgh for all g, h ∈ G.
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Fell bundles: Elementary properties

Unit fiber C∗-algebra
Items 1.-6. imply that Be is a C∗-algebra with respect to the restricted operations, the so-
called unit fiber C∗-algebra, and item 7. refers to the standard order relation on Be.

Lemma
Let (G, e) be a locally compact group and let (B, p) be a saturated Fell bundle over G.
Then the following assertions hold:

1. Bg is a Morita equivalence Be-bimodule for all g ∈ G.
2. Bg ⊗Be Bh ∼= Bgh as Morita equivalence Be-bimodules for all g, h ∈ G.
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Fell bundles: The Why

Why Fell bundles?
1. Fell bundles provide an important mechanism for illuminating the structure of

C∗-dynamical systems and their associated crossed products.
2. Fell invented Fell bundles to understand better and extend Mackey’s pioneering

works in the intersection of infinite-dimensional unitary representations of groups,
operator algebras, and noncommutative geometry.



Fell bundles over discrete groups

Fell bundles over discrete groups are of particular interest, and for these the Banach
bundles conditions become void.

Example 1
Let θ be any real number and consider the automorphism α(f)(t) := f(t + θ) of C(T).
A Fell bundles over Z is given by the collection Bn := C(T), n ∈ Z, along with the multi-
plication and involution given respectively by

fm · fn := fmα
m(fn) and f∗n := α−n(fn) ∀m, n ∈ Z.
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Fell bundles over discrete groups

Example 2
Consider the C(T)-valued 2-cocycle on Z2 given by

ω ((m1, n1), (m2, n2)) (t) := exp (2πı(t + n1m2)).

A Fell bundles over Z2 is given by the collection Bn := C(T), n ∈ Z, along with the multi-
plication and involution given respectively by

f(m1,n1) · f(m2,n2) := f(m1,n1)f(m2,n2)ω ((m1, n1), (m2, n2))

and
f∗(m1,n1)

:= ω ((−m1,−n1), (m1, n1))
∗ f(m1,n1).

for all (m1, n1), (m2, n2) ∈ Z2.
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From Fell bundles to C∗-algebras

Let (G, e) be a locally compact Hausdor� group, let λ be a le� Haar measure on G, and
let∆ be the modular function. Furthermore, let (B, p) be a Fell bundle over G.

• The space Γc(G,B) of continuous, compactly supported cross sections of (B, p)
forms a ∗-algebra w. r. t. the multiplication and involution given respectively by

(s ∗ t)(g) :=
∫

G
s(h)t

(
h−1g

)
dλ(h) and s∗(g) := ∆

(
g−1) f

(
g−1)∗

• Its completion w. r. t. the L1-norm ‖s‖1 :=
∫

G ‖s(g)‖ dλ(g) yields an involutive
Banach algebra, denoted L1(G,B).
• The enveloping C∗-algebra of L1(G,B) is called the cross-sectional C∗-algebra of
(B, p) and denoted C∗(G,B).
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Examples of cross-sectional C∗-algebras

Example 1 again
The cross-sectional C∗-algebra of the Fell bundle discussed in Example 1 is isomorphic
to the quantum 2-torus T2

θ.

Example 2 again
The cross-sectional C∗-algebra of the Fell bundle discussed in Example 2 is isomorphic
to the group C∗-algebra of the discrete 3-dimensional Heisenberg group.

Fell bundle over a discrete groups vs graded algebras
A Fell bundle over a discrete group may be seen essentially as a graded algebra which has
been disassembled in such a way that we are le� only with the scattered resulting parts.
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More examples of cross-sectional C∗-algebras

Examples
Among the examples in which the Fell bundle structure is not so obvious, lie some of the
most intensely studied C∗-algebras of the past couple of decades. These include

1. group C∗-algebras,
2. quantum SU2,
3. non-commutative Heisenberg manifolds,
4. AF-algebras,
5. Cuntz-Krieger algebras,
6. and many others.



The main research objective

• Topological aspects of C∗-algebras have been extensively developed over the last
decades. In contrast the study of geometric aspects of C∗-algebras is relatively new.
• One idea (of Alain Connes) is to construct the analogues of classical geometries for

these noncommutative spaces by using what are called spectral triples.

The What
The overall purpose of this research project is to study the noncommutative geometry of
Fell bundles by means of spectral triples, i. e., to construct spectral triples on the corre-
sponding cross-sectional C∗-algebras.

The How
The main idea is to understand better the structure of Fell bundles in terms of the under-
lying group and the unit standard fiber.
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Intermezzo: The Picard group of a C∗-algebra

Let B be a unital C∗-algebra. The set of equivalence classes of Morita equivalence
B-bimodules forms an Abelian group with respect to the internal tensor product of
Hilbert B-bimodules. This group is called the Picard group of B and denoted Pic(B).

Examples
1. For a finite-dimensional C∗-algebra B, Pic(B) is isomorphic to the group of

permutations of the spectrum of B.
2. For a compact space X, Pic (C(X)) is isomorphic to Pic(X)o Homeo(X), where

Pic(X) is the group of equivalence classes of complex line bundles over X.
3. Let 0 < θ < 1 be irrational and let T2

θ be the corresponding quantum 2-torus.
Pic(T2

θ) is isomorphic to Out(T2
θ) for quadratic θ and to Out(T2

θ)o Z otherwise.
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An invariant for Fell bundles

Lemma
Let (G, e) be a locally compact group and let (B, p) be a saturated Fell bundle over G.
Then the mapϕB : G→ Pic(Be) given byϕB(g) := [Bg] is a group homomorphism.

Proof.
By assumption, the map is well-defined and Bg ⊗Be Bh ∼= Bgh as Morita equivalence Be-
bimodules for all g, h ∈ G. It follows that

ϕB(gh) = [Bgh] = [Bg ⊗Be Bh] = [Bg][Bh] = ϕB(g)ϕB(h) ∀g, h ∈ G. �
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Construction and classification of Fell bundles

Let G be a locally compact group, let B be a unital C∗-algebra, and letϕ : G→ Pic(B) be
a group homomorphism.

A milestone
Treat the question whether there exists a saturated Fell bundle (B, p) over G with unit
fiber C∗-algebra B andϕB = ϕ, and, in the a�irmative case, to classify all such bundles.

Choose one representative Bg in each equivalence classϕ(g), g ∈ G, and consider the
set B :=

⋃
g∈G Bg along with the natural projection map p : B→ G.

ToDo’s
1. Construct/postulate a suitable topology that turns (B, p) into a Banach bundle.
2. Provide suitable structure maps that turn (B, p) into a Fell bundle.
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Thank you for your attention!
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