# Hom-Lie structure of generalized $\mathfrak{sl}(2)$ -type

The 6<sup>th</sup> Swedish Network for Algebra and Geometry, Linköping University, 2024

Stephen MBOYA

March 21, 2024

Mälardalen University, Sweden, University of Nairobi, Kenya

### Overview

**Preliminaries** 

Structure constants

3-dimensional Hom-Lie Algebras

Solvability and Nilpotency of Hom-Lie Algebras

Hom-subalgebras and Hom-ideals

1 Telliminarie

We work over algebraically closed field  $\mathbb K$  of characteristic zero. All vector spaces are over  $\mathbb K$ .

### Definition 1 (Hom-Lie algebra)

A Hom-Lie algebra is a triple  $(\mathscr{V},[\cdot,\cdot],\alpha)$  consisting of a linear space  $\mathscr{V}$ , a bilinear map  $[\cdot,\cdot]:\mathscr{V}\times\mathscr{V}\to\mathscr{V}$ , and a linear map  $\alpha:\mathscr{V}\to\mathscr{V}$  satisfying the skew-symmetry condition and Hom-Jacobi identity properties. That is for all  $x,y,z\in\mathscr{V}$ :

(i) 
$$[x,y] = -[y,x]$$

(ii) 
$$\sum_{O_{x,y,z}} [\alpha(x), [y,z]] = 0.$$

where  $\circlearrowleft_{x,y,z}$  denotes summation over cyclic permutation on x,y,z.

For a skew-symmetric algebra  $(\mathscr{V},[\cdot,\cdot])$  by a Hom-Lie structure we mean the vector subspace of all linear twisting maps  $\alpha$  that satisfies the Hom-Jacobi identity (ii).

#### Definition 2

Let  $(\mathscr{V}_1,[\cdot,\cdot],\alpha)$  and  $(\mathscr{V}_2,\{\cdot,\cdot\},\beta)$  be Hom-Lie algebras. A Hom-Lie algebra morphism is a linear mapping

$$f: (\mathscr{V}_1, [\cdot, \cdot], \boldsymbol{\alpha}) \to (\mathscr{V}_2, \{\cdot, \cdot\}, \boldsymbol{\beta})$$

satisfying the following conditions

- (i)  $f([x,y]) = \{f(x), f(y)\}$  for all  $x, y \in \mathcal{V}_1$  , and
- (ii)  $f \circ \alpha = \beta \circ f$ .

When f satisfies only the first condition (i) we say that f is a weak morphism.

#### Definition 3

A Hom Lie-algebra  $(\mathscr{V}, [\cdot, \cdot], \alpha)$  is said to be:

- (i) Multiplicative if  $\alpha$  is an algebra morphism.
- (ii) Regular if  $\alpha$  is an isomorphism.

## Definition 4 (Hom-subalgebra)

Let  $(\mathscr{V}, [\cdot, \cdot], \alpha)$  be a Hom-Lie algebra. A Hom-subalgebra is a subspace  $\mathscr{W} \subseteq \mathscr{V}$  that is invariant under the linear  $\alpha$ , and closed under bilinear bracket multiplication. That is:

- (i)  $\alpha(\mathcal{W}) \subseteq \mathcal{W}$ , and
- (ii)  $[\mathscr{W},\mathscr{W}] \in \mathscr{W}$ .

### Definition 5 (Hom-Ideal)

Let  $(\mathcal{V}, [\cdot, \cdot], \alpha)$  be a Hom-Lie algebra. A Hom-ideal is a subspace  $I \subseteq \mathcal{V}$  satisfying the following properties:

- (i)  $\alpha(I) \subseteq I$
- (ii)  $[\mathscr{V},x] \in I$  for all  $x \in I$ .

### Example 6

Let  $\mathscr{A}=(\mathscr{V},[\cdot,\cdot],\alpha)$  and  $\mathscr{B}=(\mathscr{W},\{\cdot,\cdot\},\alpha)$  be Hom-Lie algebras and  $f:\mathscr{A}\to\mathscr{B}$  be Hom-Lie algebra morphism and let  $x\in\ker(f)$  and  $v\in\mathscr{V}$  then,  $f(\alpha(x))=\alpha(f(x))=\alpha(0)=0 \Longrightarrow \ker(f)$  is  $\alpha$ -invariant. Furthermore,

$$f([v,x]) = \{f(v), f(x)\} = \{f(v), 0\} = 0.$$

Therefore, ker(f) is a Hom-ideal.

# Structure constants

### Structure constants

Let  $\{e_1, \ldots, e_n\}$  be a basis for  $\mathscr{V}$ . The structure constants equation is given by:

$$[e_i, e_j] = \sum_{s=1}^n C_{i,j}^s e_s \quad \text{ and } \quad \alpha(e_i) = \sum_{t=1}^n a_{ti} e_t, \text{ for all } C_{i,j}^s, a_{ti} \in \mathbb{K}.$$
 (1)

The skew-symmetry and Hom-Jacobi identity can be rewritten as follows:

(i) Skew-symmetry: 
$$[e_i, e_j] = -[e_j, e_i] \implies \sum_{s=1}^n C_{i,j}^s e_s = -\sum_{s=1}^n C_{j,i}^s e_s$$
.

(ii) Hom-Jacobi identity

$$\sum_{\emptyset(i,j,k)} \left[ \alpha(e_i), \left[ e_j, e_k \right] \right] = \sum_{r=1}^n \left( \sum_{s=1}^n \sum_{t=1}^n \sum_{\emptyset(i,j,k)} a_{ti} C_{j,k}^s C_{t,s}^r \right) e_r = 0.$$

#### Structure constants

This determines a subvariety of  $\mathbb{K}^{\frac{n^2(n+1)}{2}}$  defined by the system of polynomial equations in (2), and is linear in  $a_{ti}$  variables

$$\sum_{t=1}^{n} \left( a_{ti} \left( C_{j,k}^{s} C_{t,s}^{r} \right) + a_{tk} \left( C_{i,j}^{s} C_{t,s}^{r} \right) + a_{tj} \left( C_{k,i}^{s} C_{t,s}^{r} \right) \right) = 0, \tag{2}$$

for all  $1 \le i < j \le k \le n$  and r = 1, 2, ... n.

Equation (2) can be represented in matrix form as  $\mathcal{M}a_{\alpha}=0$ , where  $\mathcal{M}$  is a  $\binom{n}{3}\cdot n\times n^2$  matrix and  $a_{\alpha}$  is the column matrix. Therefore, the linear transformation  $\mathcal{L}$  represented by  $\mathcal{M}$  is

$$\mathscr{L}: \mathbb{K}^{n^2} \to \mathbb{K}^{\frac{n^2(n-1)(n-2)}{6}}.$$
 (3)

For a multiplicative Hom-Lie algebras the weak morphism condition can be written as follows: For all  $1 \le i < j \le n$ ,

$$\sum_{s=1}^{n} \sum_{r=1}^{n} a_{rs} C_{i,j}^{s} e_{r} - \sum_{t=1}^{n} a_{ti} \sum_{p=1}^{n} a_{pj} \sum_{q=1}^{n} C_{t,p}^{q} e_{q} = 0.$$
 (4)

3-dimensional Hom-Lie Algebras

# 3-dimensional Hom-Lie Algebras

Let  $\{e_1,e_2,e_3\}$  be a basis for  $\mathscr V$  then, the Hom-Jacobi identity given by the system of polynomial Equations (2) become

$$a_{11}\left(C_{2,3}^{3}C_{1,3}^{r}+C_{2,3}^{2}C_{1,2}^{r}\right)+a_{12}\left(-C_{1,3}^{3}C_{1,3}^{r}-C_{1,3}^{2}C_{1,2}^{r}\right)+a_{13}\left(C_{1,2}^{3}C_{1,3}^{r}+C_{1,2}^{2}C_{1,2}^{r}\right)+\\+a_{21}\left(C_{2,3}^{3}C_{2,3}^{r}-C_{2,3}^{1}C_{1,2}^{r}\right)+a_{22}\left(C_{1,3}^{1}C_{1,2}^{r}-C_{1,3}^{3}C_{2,3}^{r}\right)+a_{23}\left(C_{1,2}^{3}C_{2,3}^{r}-C_{1,2}^{1}C_{1,2}^{r}\right)+\\+a_{31}\left(-C_{2,3}^{1}C_{1,3}^{r}-C_{2,3}^{2}C_{2,3}^{r}\right)+a_{32}\left(C_{1,3}^{2}C_{2,3}^{r}+C_{1,3}^{1}C_{1,3}^{r}\right)+a_{33}\left(-C_{1,2}^{1}C_{1,3}^{r}-C_{2,2}^{2}C_{2,3}^{r}\right)=0$$

$$(5)$$

for all r=1,2,3 and the linear transformation  $\mathscr L$  represented by the matrix  $\mathscr M$  in (3) is given by:  $\mathscr L:\mathbb K^9\to\mathbb K^3$ .

For the multiplicative Hom-Lie algebras the system of polynomial equations in (4) become:

$$(a_{11}C_{i,j}^{1} + a_{12}C_{i,j}^{2} + a_{13}C_{i,j}^{3})e_{1} + (a_{21}C_{i,j}^{1} + a_{22}C_{i,j}^{2} + a_{23}C_{i,j}^{3})e_{2} + (a_{31}C_{i,j}^{1} + a_{32}C_{i,j}^{2} + a_{33}C_{i,j}^{3})e_{3}$$

$$= (a_{3i}a_{2j}C_{3,2}^{1} + a_{2i}a_{3j}C_{2,3}^{1})e_{1} + (a_{2i}a_{1j}C_{2,1}^{2} + a_{1i}a_{2j}C_{1,2}^{2})e_{2} + (a_{3i}a_{1j}C_{3,1}^{3} + a_{1i}a_{3j}C_{1,3}^{3})e_{3}$$

$$(6)$$

For all i, j = 1, 2, 3.

# 3-dimensional Hom-Lie Algebras

Consider skew-symmetric algebra  $(\mathscr{V}, [\cdot, \cdot])$ . We aim at constructing all the linear space of all linear twisting maps  $\alpha$  such that the bracket multiplication defined by

$$[e_1, e_2] = \lambda_1 e_2, [e_1, e_3] = \lambda_2 e_3, [e_2, e_3] = \lambda_3 e_1, \forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{K}$$
(7)

determines 3-dimensional Hom-Lie algebra, and provide all classes and subclasses of this Hom-Lie algebra.

Example 7

When  $\lambda_1, \lambda_2, \lambda_3 \neq 0$  then, the solution set of (5) is given by

$$\{a_{ij}, 1 \le i, j \le 3 \mid a_{33} = -\frac{\lambda_2}{\lambda_1} a_{22}, a_{21} = \frac{\lambda_1}{\lambda_3} a_{13}, a_{31} = -\frac{\lambda_2}{\lambda_3} a_{12}\}$$

and the resulting Hom-Lie structure is of dimension 6 given by the matrix

$$[\alpha] = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ \frac{\lambda_1}{\lambda_3} a_{13} & a_{22} & a_{23} \\ -\frac{\lambda_2}{\lambda_3} a_{12} & a_{32} & -\frac{\lambda_2}{\lambda_1} a_{22} \end{pmatrix}.$$

# 3-dimensional Hom-Lie Algebras I

Furthermore, solving (5) and (6) simultaneously we obtain the following subsets of the linear space of linear twisting maps  $\alpha$ .

(a) When 
$$\lambda_1 \neq \pm \lambda_2$$
 for all  $\lambda_1, \lambda_2, \lambda_3 \neq 0$ ,  $[\alpha] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & -\frac{\lambda_2}{\lambda_1} a_{22} \end{pmatrix}$ , where  $a_{22}^2 = -\frac{\lambda_1}{\lambda_2}$ 

(b) When  $\lambda_1 = -\lambda_2$  for all  $\lambda_1, \lambda_2, \lambda_3 \neq 0$ , then,  $\alpha$  is given by:

(i) 
$$\begin{pmatrix} a_{11} & \frac{(-1+a_{11})(1+a)\lambda_3}{2a_{13}\lambda_2} & a_{13} \\ \frac{\lambda_1}{\lambda_3}a_{13} & -\frac{1}{2}(1+a_{11}) & -\frac{a_{13}\lambda_2}{(1+a_{11})\lambda_3} \\ \frac{(1-a_{11})(1+a_{11})}{2a_{13}} & \frac{(-1+a_{11})^2(1+a_{11})\lambda_3}{4a_{13}\lambda_2} & -\frac{1}{2}(1+a_{11}) \end{pmatrix}, \text{ for } a_{13} \neq 0, a_{11} \neq -1$$

(ii) 
$$\begin{pmatrix} 1 & a_{12} & 0 \\ 0 & -1 & 0 \\ -\frac{\lambda_2}{\lambda_3} a_{12} & -\frac{a_{12}^2 \lambda_2}{\lambda_3} & -1 \end{pmatrix}$$
(iii) 
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & \frac{1}{a_{32}} \\ 0 & a_{32} & 0 \end{pmatrix}$$
(iv) 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 for  $a_{32} \neq 0$ 

# 3-dimensional Hom-Lie Algebras II

(c) When  $\lambda_1 = \lambda_2$ , for all  $\lambda_1, \lambda_2, \lambda_3 \neq 0$  then,  $\alpha$  is given by:

(i) 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & a_{22} & -\frac{1+a_{22}^2}{a_{32}} \\ 0 & a_{32} & -a_{22} \end{pmatrix}$$
 for  $a_{32} \neq 0$  (ii)  $\begin{pmatrix} 1 & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & -a_{22} \end{pmatrix}$  where  $a_{22}^2 = -1$ .

#### Lemma 8

Multiplicative Hom-Lie algebras arising from simple Lie algebras of  $\mathfrak{sl}(2)$ -type with non-zero twisting maps are regular Hom-Lie algebras.

Solvability and Nilpotency of Hom-Lie

Algebras

We explore more properties of Hom-Lie algebras through its derived series and central descending series of an ideal I in  $\mathscr{V}$ .

#### Definition 9

Let  $(\mathscr{V}, [\cdot, \cdot], \alpha)$  be a Hom-Lie algebra, and  $I \subseteq \mathscr{V}$  be an ideal of  $\mathscr{V}$ .

(i) A derived series of an ideal I is defined as

$$D^{0}(I) = I \text{ and } D^{k+1}(I) = [D^{k}(I), D^{k}(I)],$$
(8)

(ii) A central descending series of I is defined as

$$C^{0}(I) = I \text{ and } C^{k+1}(I) = [C^{k}(I), I].$$
 (9)

Furthermore, I is said to be solvable (resp. nilpotent ) of at most class k if  $D^k(I)=\{0\}$  ( resp.  $C^k(I)=\{0\}$  ) and  $D^{k-1}(I)\neq\{0\}$  ( resp.  $C^{k-1}(I)\neq\{0\}$  ) for some  $k\in\mathbb{Z}_{>0}$ .

#### Lemma 10

Let  $(\mathscr{V},[\cdot,\cdot],\alpha)$  be a Hom-Lie algebra, and I be an ideal of  $\mathscr{V}$  for some  $k\in\mathbb{Z}_{\geq 0}$ , we have the following:

- (i)  $D^{k+1}(I) \subseteq D^k(I)$ ,
- (ii)  $C^{k+1}(I) \subseteq C^k(I)$ .

### Lemma 11

Let  $\mathscr{A} = (\mathscr{V}, [\cdot, \cdot])$  be a skew-symmetric algebra.

- (i) If  $\mathscr{A}$  is nilpotent, then  $Z(\mathscr{A})$  is not trivial.
- (ii) If dim  $\mathscr{A}=3$ , then dim  $Z(\mathscr{A})=0$  or dim  $Z(\mathscr{A})=1$  or  $Z(\mathscr{A})=\mathscr{A}$ .

### Proposition 12

Let  $\mathscr{A}=(\mathscr{V},[\cdot,\cdot],\alpha)$  be 3-dimensional Hom-Lie algebra, then  $\mathscr{A}$  is class 2 nilpotent if and only if  $\dim Z(\mathscr{A})=1$  and  $C^1(\mathscr{A})=Z(\mathscr{A})$ .

### Corollary 13

Let  $\mathscr A$  be a skew-symmetric algebra:

(1)  $\mathscr{A}$  is nilpotent of class at most r if and only if for all  $1 \leq k_0, \ldots, k_r \leq n, 1 \leq t_0 \leq n$ ,

$$\sum_{t_1=1}^n \cdots \sum_{t_{r-1}=1}^n \left( \prod_{j=0}^{r-2} C_{k_j, t_{j+1}}^{t_j} \right) C_{k_{r-1}, k_r}^{t_{r-1}} = 0.$$
 (10)

(2)  $\mathscr{A}$  is solvable of class at most r if and only if for all  $1 \leq k_1, \ldots, k_{2^r} \leq n$ ,

$$\sum_{t_0=1}^n \cdots \sum_{t_{2r-3}=1}^n {r \choose \prod_{j=0}^{2^{r-1}-1} C_{k_{2j+1},k_{2j+2}}^{t_j}} {r \choose \prod_{p=0}^{2^{r-1}-2} C_{t_{2p},t_{2p+1}}^{t_{2r-1+p}}} = 0.$$
 (11)

#### Remark 14

Let  $\mathscr A$  be a skew-symmetric algebra. If  $\mathscr A$  is nilpotent (resp. solvable) of class at most r then, the resulting algebraic subvariety in  $(C^k_{i,j})_{i< j}$  variables is determined by  $n^{r+2}$  (resp.  $n^{2^r+1}$ ) homogeneous polynomial equations of degree r, (resp.  $2^r-1$ ).

#### Lemma 15

Let  $\mathscr{A}=(\mathscr{V},[\cdot,\cdot])$  be n-dimensional skew-symmetric algebra and  $\alpha\in\operatorname{End}(\mathscr{V})$  be a Hom-Lie structure on  $\mathscr{V}$ . If  $\mathscr{A}$  is class 2 nilpotent, then linear space of Hom-Lie structures is of dimension  $n^2$ .

### Example 16

Consider 3-dimensional skew-symmetric algebra  $\mathscr{A}=(\mathscr{V},[\cdot,\cdot])$  with the bracket multiplication defined as  $[e_2,e_3]=\lambda e_1$ . Then,  $C^1(\mathscr{V})=Z(\mathscr{V})=\operatorname{span}\{e_1\}$ . Therefore,  $\mathscr{A}$  is class 2 nilpotent. Moreover, the linear space of Hom-Lie structure is of dimension 9.

Hom-subalgebras and Hom-ideals

# Hom-subalgebras and Hom-ideals

We present some classes of non-multiplicative Hom-Lie algebras with the properties that their derived series and central descending series are  $\alpha$ -invariant. We give instances when these derived algebras are Hom-subalgebras and Hom-ideals.

### Proposition 17

Let  $\mathscr{A} = (\mathscr{V}, [\cdot, \cdot], \alpha)$  be a Hom-Lie algebra, and let  $I \subseteq \mathscr{V}$  be a Hom-ideal.

- (i) Then  $D^1(I)$  and  $C^1(I)$  are weak-ideals of  $\mathscr{A}$ .
- (ii) For all  $n \in \mathbb{Z}_{\geq 0}$ ,  $D^n(I)$ , and  $C^n(I)$  are weak subalgebras of  $\mathscr V$  and if in addition,  $\mathscr A$  is multiplicative, then the subspaces  $D^n(I)$  and  $C^n(I)$  are Hom-subalgebras of  $\mathscr A$ .

### Proposition 18

Let  $(\mathscr{V}, [\cdot, \cdot], \alpha)$  be a multiplicative Hom-Lie algebra and I be Hom-ideal of  $\mathscr{V}$ . If the linear map  $\alpha$  is surjective then, for all  $n \in \mathbb{Z}_{>0}$ ,  $D^n(I)$  and  $C^n(I)$  are Hom-ideals.

Table 1: The linear space of Hom-Lie structures of generalized Hom-Lie algebras of  $\mathfrak{sl}(2)$ -type, multiplicative Hom-Lie algebras, Hom-ideals, and solvability and nilpotency properties.

| Structure                                     | $[lpha]$ such that $(\mathscr{V},[\cdot,\cdot],lpha)$ is a                                                                               | Derived Series, Central                                                                                | $[\alpha]$ such that $C^r(\mathcal{V})$ , $D^r(\mathcal{V})$                                                                                                                           | 1-dim weak ideal and $[lpha]$ that | $[lpha]$ such that $(\mathcal{V}, [\cdot,\cdot], lpha)$ is multiplica-   |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------|
| Constants                                     | Hom-Lie algebra                                                                                                                          | descending series of ${\mathscr V}$                                                                    | are α-invariant                                                                                                                                                                        | turn them into Hom-ideals          | tive                                                                     |
|                                               |                                                                                                                                          | Not nilpotent<br>Class-3-Solvable                                                                      |                                                                                                                                                                                        |                                    |                                                                          |
| $\lambda_1 = 0$ $\lambda_2, \lambda_3 \neq 0$ | $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & 0 & a_{23} \\ -\frac{\lambda_2}{\lambda_3} a_{12} & a_{32} & a_{33} \end{bmatrix}$ | For all $r \ge 1$ $C^r(\mathscr{V}) = \operatorname{span}\{e_1, e_3\}$ $= D^1(\mathscr{V})$ Weak ideal | $\begin{array}{cccc} a_{21} = a_{23} = 0 \\ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ -\frac{\lambda_2}{\lambda_3} a_{12} & a_{32} & a_{33} \end{pmatrix} \end{array}$  |                                    | $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & a_{32} & 0 \end{pmatrix}$ |
|                                               |                                                                                                                                          | $D^2(\mathscr{V}) = \operatorname{span}\{e_3\}$<br>Not weak ideal                                      | $ \begin{aligned} a_{13} &= a_{23} = 0 \\ \begin{pmatrix} a_{11} & a_{12} & 0 \\ a_{21} & 0 & 0 \\ -\frac{\lambda_2}{\lambda_3} a_{12} & a_{32} & a_{33} \end{pmatrix} \end{aligned} $ |                                    |                                                                          |

| $\lambda_2 = 0$ $\lambda_1, \lambda_3 \neq 0$ | $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ \frac{\lambda_1}{\lambda_3} a_{13} & a_{22} & a_{23} \\ a_{31} & a_{32} & 0 \end{pmatrix}$ | Not nilpotent Class-3-Solvable | $\begin{array}{c} a_{31}=a_{32}=0\\ \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ \frac{\lambda_1}{\lambda_3}a_{13} & a_{22} & a_{23}\\ 0 & 0 & 0 \end{pmatrix}\\ \\ a_{12}=a_{32}=0\\ \begin{pmatrix} a_{11} & 0 & a_{13}\\ \frac{\lambda_1}{\lambda_3}a_{13} & a_{22} & a_{23}\\ a_{31} & 0 & 0 \end{pmatrix} \end{array}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a_{23} \\ 0 & 0 & 0 \end{pmatrix}$ |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| $\lambda_3 = 0$ $\lambda_1, \lambda_2 \neq 0$ | $\begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$                                  | Not nilpotent Class-2-Solvable | $\begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$                                                                                                                                                                                                                    | $\begin{array}{c} \operatorname{span}\{c_2e_2+c_3e_3\}\\ \begin{pmatrix} a_{11} & 0 & 0\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & \mathfrak{k} \end{pmatrix}\\ \text{where}\\ \mathfrak{k}=a_{22}+\frac{c_3}{c_2}a_{23}-\frac{c_2}{c_3}a_{32}\\ \operatorname{span}\{e_2\}\\ \begin{pmatrix} a_{11} & 0 & 0\\ a_{21} & a_{22} & a_{23}\\ a_{31} & 0 & a_{33} \end{pmatrix}\\ \operatorname{span}\{e_3\}\\ \begin{pmatrix} a_{11} & 0 & 0\\ a_{21} & a_{22} & 0\\ a_{31} & a_{32} & a_{33} \end{pmatrix}\\ \begin{pmatrix} a_{11} & 0 & 0\\ a_{21} & a_{22} & 0\\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                     |

19/24

|                                               |                                                                                       |                                                            |                                                                                 |                                                                                                                                                                                          |                                                                                                                       | $\lambda_1 = \lambda_2$ $\begin{pmatrix} 1 & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$                                               |
|-----------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                                                                                       |                                                            |                                                                                 |                                                                                                                                                                                          |                                                                                                                       | $\begin{pmatrix} 1 & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$                                                                            |
|                                               |                                                                                       |                                                            |                                                                                 |                                                                                                                                                                                          |                                                                                                                       | $\begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & 0 & a_{33} \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \\ a_{21} & 0 & a_{23} \\ a_{31} & a_{32} & 0 \end{pmatrix}$ |
|                                               |                                                                                       |                                                            |                                                                                 |                                                                                                                                                                                          |                                                                                                                       | $\begin{pmatrix} a_{31} & a_{32} & 0 \\ \lambda_1 = -\lambda_2 & & & \\ \begin{pmatrix} -1 & 0 & 0 \\ a_{21} & 0 & a_{23} \\ a_{31} & a_{32} & 0 \end{pmatrix}$         |
|                                               |                                                                                       |                                                            | Class-2-nilpotent<br>Class-2-Solvable                                           |                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                         |
| $\lambda_1, \lambda_2 = 0$ $\lambda_3 \neq 0$ | $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$ | $\begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$ | $C^1(\mathscr{V}) = \operatorname{span}\{e_1\}$ $= D^1(\mathscr{V})$ Weak ideal | $     \begin{array}{c}       a_{21} = a_{31} = 0 \\       \begin{pmatrix}       a_{11} & a_{12} & a_{13} \\       0 & a_{22} & a_{23} \\       0 & a_{32} & a_{33}     \end{pmatrix}   $ | $\begin{bmatrix} span\{e_1\} \\ a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{bmatrix}$ | $\begin{pmatrix} a_{22}a_{33} - a_{23}a_{32} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{pmatrix}$                                             |

| $\lambda_1, \lambda_3 = 0$ $\lambda_2 \neq 0$ | $\begin{pmatrix} a_{11} & 0 & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ | Not nilpotent Class-2-Solvable                                                                                 | $\begin{pmatrix} a_{13} = a_{23} = 0 \\ a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ | $\begin{array}{c} \operatorname{span}\{e_2\} \\ \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & 0 & a_{33} \end{pmatrix} \\ \operatorname{span}\{e_3\} \\ \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \end{array}$ | $\begin{pmatrix} 0 & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & 0 & a_{33} \end{pmatrix}$ $\begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & 0 & 0 \end{pmatrix}$ |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\lambda_2, \lambda_3 = 0$ $\lambda_1 \neq 0$ | $\begin{pmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ | Not nilpotent Class-2-Solvable $C^1(\mathcal{Y}) = \operatorname{span}\{e_2\}$ $= D^1(\mathcal{Y})$ Weak ideal | $a_{12} = a_{32} = 0$ $\begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & 0 & a_{33} \end{pmatrix}$  | $\begin{array}{c} \operatorname{span}\{e_2\}\\ \begin{pmatrix} a_{11} & 0 & 0\\ a_{21} & a_{22} & a_{23}\\ a_{31} & 0 & a_{33} \end{pmatrix}\\ \operatorname{span}\{e_3\}\\ \begin{pmatrix} a_{11} & a_{12} & 0\\ a_{21} & a_{22} & 0\\ a_{31} & a_{32} & a_{33} \end{pmatrix}$               | $\begin{pmatrix} 0 & 0 & 0 \\ a_{21} & 0 & a_{23} \\ a_{31} & 0 & a_{33} \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & 0 & a_{33} \end{pmatrix}$ $\begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & 0 & 0 \\ a_{31} & 0 & a_{33} \end{pmatrix}$ |

# Hom-subalgebras and Hom-ideals

#### Remarks

- (i) In both cases 1 and 2, the triple  $(\mathcal{V}, [\cdot, \cdot], \alpha)$  defines a Hom-Lie algebra. However, the bilinear bracket multiplication do not define a Lie algebra.
- (ii) In Case 3, we note that this algebra not Hom-simple in general, because there exists a Hom-ideal  $I = \text{span}\{e_2, e_3\}$ .

### References

- [1] Kitouni, A., Makhlouf, A. and Silvestrov, S. (2016). *On* (n+1)-Hom-Lie algebras induced by n-Hom-Lie algebras., Georgian Mathematical Journal, 23(1). doi:https://doi.org/10.1515/gmj-2015-0063.
- [2] Ongong'a, E., Richter, J. and Silvestrov, S. (2019). *Classification of 3-dimensional Hom-Lie algebras*, Journal of Physics: Conference Series, 1194, p.012084. doi:https://doi.org/10.1088/1742-6596/1194/1/012084.
- [3] Makhlouf, A. and Silvestrov, S.D. (2008). *Hom-algebra structures.*, Journal of Generalized Lie Theory and Applications, 2(2), pp.51–64. doi:https://doi.org/10.4303/jglta/s070206.
- [4] Remm, E. (2018). 3-Dimensional Skew-symmetric Algebras and the Variety of Hom-Lie Algebras., Algebra Colloquium, 25(04), pp.547–566. doi:https://doi.org/10.1142/s100538671800038x.

# Thank you!