Hom-Lie structure of generalized $\mathfrak{s l}$ (2)-type

The 6 ${ }^{\text {th }}$ Swedish Network for Algebra and Geometry, Linköping University, 2024

Stephen MBOYA

March 21, 2024
Mälardalen University, Sweden, University of Nairobi, Kenya

Overview

Preliminaries

Structure constants

3-dimensional Hom-Lie Algebras

Solvability and Nilpotency of Hom-Lie Algebras

Hom-subalgebras and Hom-ideals

Preliminaries

Preliminaries

We work over algebraically closed field \mathbb{K} of characteristic zero. All vector spaces are over \mathbb{K}.

Definition 1 (Hom-Lie algebra)

A Hom-Lie algebra is a triple $(\mathscr{V},[\cdot, \cdot], \alpha)$ consisting of a linear space \mathscr{V}, a bilinear map $[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathscr{V}$, and a linear map $\alpha: \mathscr{V} \rightarrow \mathscr{V}$ satisfying the skew-symmetry condition and Hom-Jacobi identity properties. That is for all $x, y, z \in \mathscr{V}$:
(i) $[x, y]=-[y, x]$
(ii) $\sum_{O_{x, y ; z}}[\alpha(x),[y, z]]=0$.
where $\circlearrowleft_{x, y, z}$ denotes summation over cyclic permutation on x, y, z.
For a skew-symmetric algebra ($\mathscr{V},[\cdot, \cdot]$) by a Hom-Lie structure we mean the vector subspace of all linear twisting maps α that satisfies the Hom-Jacobi identity (ii).

Preliminaries

Definition 2

Let $\left(\mathscr{V}_{1},[\cdot, \cdot], \alpha\right)$ and $\left(\mathscr{V}_{2},\{\cdot, \cdot\}, \beta\right)$ be Hom-Lie algebras. A Hom-Lie algebra morphism is a linear mapping

$$
f:\left(\mathscr{V}_{1},[\cdot, \cdot], \alpha\right) \rightarrow\left(\mathscr{V}_{2},\{\cdot, \cdot\}, \beta\right)
$$

satisfying the following conditions
(i) $f([x, y])=\{f(x), f(y)\}$ for all $x, y \in \mathscr{V}_{1}$, and
(ii) $f \circ \alpha=\beta \circ f$.

When f satisfies only the first condition (i) we say that f is a weak morphism.

Preliminaries

Definition 3

A Hom Lie-algebra $(\mathscr{V},[\cdot, \cdot], \alpha)$ is said to be:
(i) Multiplicative if α is an algebra morphism.
(ii) Regular if α is an isomorphism.

Definition 4 (Hom-subalgebra)

Let $(\mathscr{V},[\cdot, \cdot], \alpha)$ be a Hom-Lie algebra. A Hom-subalgebra is a subspace $\mathscr{W} \subseteq \mathscr{V}$ that is invariant under the linear α, and closed under bilinear bracket multiplication. That is:
(i) $\alpha(\mathscr{W}) \subseteq \mathscr{W}$, and
(ii) $[\mathscr{W}, \mathscr{W}] \in \mathscr{W}$.

Preliminaries

Definition 5 (Hom-Ideal)

Let $(\mathscr{V},[\cdot, \cdot], \alpha)$ be a Hom-Lie algebra. A Hom-ideal is a subspace $I \subseteq \mathscr{V}$ satisfying the following properties:
(i) $\alpha(I) \subseteq I$
(ii) $[\mathscr{V}, x] \in I$ for all $x \in I$.

Example 6

Let $\mathscr{A}=(\mathscr{V},[\cdot, \cdot], \alpha)$ and $\mathscr{B}=(\mathscr{W},\{\cdot, \cdot\}, \alpha)$ be Hom-Lie algebras and $f: \mathscr{A} \rightarrow \mathscr{B}$ be Hom-Lie algebra morphism and let $x \in \operatorname{ker}(f)$ and $v \in \mathscr{V}$ then, $f(\alpha(x))=\alpha(f(x))=\alpha(0)=0 \Longrightarrow \operatorname{ker}(f)$ is α-invariant. Furthermore,

$$
f([v, x])=\{f(v), f(x)\}=\{f(v), 0\}=0 .
$$

Therefore, $\operatorname{ker}(f)$ is a Hom-ideal.

Structure constants

Structure constants

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for \mathscr{V}. The structure constants equation is given by:

$$
\begin{equation*}
\left[e_{i}, e_{j}\right]=\sum_{s=1}^{n} C_{i, j}^{s} e_{s} \quad \text { and } \quad \alpha\left(e_{i}\right)=\sum_{t=1}^{n} a_{t i} e_{t}, \text { for all } C_{i, j}^{s}, a_{t i} \in \mathbb{K} \tag{1}
\end{equation*}
$$

The skew-symmetry and Hom-Jacobi identity can be rewritten as follows:
(i) Skew-symmetry: $\left[e_{i}, e_{j}\right]=-\left[e_{j}, e_{i}\right] \Longrightarrow \sum_{s=1}^{n} C_{i, j}^{s} e_{s}=-\sum_{s=1}^{n} C_{j, i}^{s} e_{s}$.
(ii) Hom-Jacobi identity

$$
\sum_{\circlearrowleft(i, j, k)}\left[\alpha\left(e_{i}\right),\left[e_{j}, e_{k}\right]\right]=\sum_{r=1}^{n}\left(\sum_{s=1}^{n} \sum_{t=1}^{n} \sum_{\circlearrowleft(i, j, k)} a_{t i} C_{j, k}^{s} C_{t, s}^{r}\right) e_{r}=0 .
$$

Structure constants

This determines a subvariety of $\mathbb{K}^{\frac{n^{2}(n+1)}{2}}$ defined by the system of polynomial equations in (2), and is linear in $a_{t i}$ variables

$$
\begin{equation*}
\sum_{s, t=1}^{n}\left(a_{t i}\left(C_{j, k}^{s} C_{t, s}^{r}\right)+a_{t k}\left(C_{i, j}^{s} C_{t, s}^{r}\right)+a_{t j}\left(C_{k, i}^{s} C_{t, s}^{r}\right)\right)=0 \tag{2}
\end{equation*}
$$

for all $1 \leq i<j<k \leq n$ and $r=1,2, \ldots n$.
Equation (2) can be represented in matrix form as $\mathscr{M} a_{\alpha}=0$, where \mathscr{M} is a $\binom{n}{3} \cdot n \times n^{2}$ matrix and a_{α} is the column matrix. Therefore, the linear transformation \mathscr{L} represented by \mathscr{M} is

$$
\begin{equation*}
\mathscr{L}: \mathbb{K}^{n^{2}} \rightarrow \mathbb{K}^{n^{n^{2}(n-1)(n-2)}} 6 \tag{3}
\end{equation*}
$$

For a multiplicative Hom-Lie algebras the weak morphism condition can be written as follows: For all $1 \leq i<j \leq n$,

$$
\begin{equation*}
\sum_{s=1}^{n} \sum_{r=1}^{n} a_{r s} C_{i, j}^{S} e_{r}-\sum_{t=1}^{n} a_{t i} \sum_{p=1}^{n} a_{p j} \sum_{q=1}^{n} C_{t, p}^{q} e_{q}=0 \tag{4}
\end{equation*}
$$

3-dimensional Hom-Lie Algebras

3-dimensional Hom-Lie Algebras

Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis for \mathscr{V} then, the Hom-Jacobi identity given by the system of polynomial Equations (2) become

$$
\begin{align*}
& a_{11}\left(C_{2,3}^{3} C_{1,3}^{r}+C_{2,3}^{2} C_{1,2}^{r}\right)+a_{12}\left(-C_{1,3}^{3} C_{1,3}^{r}-C_{1,3}^{2} C_{1,2}^{r}\right)+a_{13}\left(C_{1,2}^{3} C_{1,3}^{r}+C_{1,2}^{2} C_{1,2}^{r}\right)+ \\
& +a_{21}\left(C_{2,3}^{3} C_{2,3}^{r}-C_{2,3}^{1} C_{1,2}^{r}\right)+a_{22}\left(C_{1,3}^{1} C_{1,2}^{r}-C_{1,3}^{3} C_{2,3}^{r}\right)+a_{23}\left(C_{1,2}^{3} C_{2,3}^{r}-C_{1,2}^{1} C_{1,2}^{r}\right)+ \\
& +a_{31}\left(-C_{2,3}^{1} C_{1,3}^{r}-C_{2,3}^{2} C_{2,3}^{r}\right)+a_{32}\left(C_{1,3}^{2} C_{2,3}^{r}+C_{1,3}^{1} C_{1,3}^{r}\right)+a_{33}\left(-C_{1,2}^{1} C_{1,3}^{r}-C_{1,2}^{2} C_{2,3}^{r}\right)=0 \tag{5}
\end{align*}
$$

for all $r=1,2,3$ and the linear transformation \mathscr{L} represented by the matrix \mathscr{M} in (3) is given by: $\mathscr{L}: \mathbb{K}^{9} \rightarrow \mathbb{K}^{3}$.

For the multiplicative Hom-Lie algebras the system of polynomial equations in (4) become:

$$
\begin{align*}
& \left(a_{11} C_{i, j}^{1}+a_{12} C_{i, j}^{2}+a_{13} C_{i, j}^{3}\right) e_{1}+\left(a_{21} C_{i, j}^{1}+a_{22} C_{i, j}^{2}+a_{23} C_{i, j}^{3}\right) e_{2}+\left(a_{31} C_{i, j}^{1}+a_{32} C_{i, j}^{2}+a_{33} C_{i, j}^{3}\right) e_{3} \\
& \quad=\left(a_{3 i} a_{2 j} C_{3,2}^{1}+a_{2 i} a_{3 j} C_{2,3}^{1}\right) e_{1}+\left(a_{2 i} a_{1 j} C_{2,1}^{2}+a_{1 i} a_{2 j} C_{1,2}^{2}\right) e_{2}+\left(a_{3 i} a_{1 j} C_{3,1}^{3}+a_{1 i} a_{3 j} C_{1,3}^{3}\right) e_{3} \tag{6}
\end{align*}
$$

For all $i, j=1,2,3$.

3-dimensional Hom-Lie Algebras

Consider skew-symmetric algebra $(\mathscr{V},[\cdot, \cdot])$. We aim at constructing all the linear space of all linear twisting maps α such that the bracket multiplication defined by

$$
\begin{equation*}
\left[e_{1}, e_{2}\right]=\lambda_{1} e_{2},\left[e_{1}, e_{3}\right]=\lambda_{2} e_{3},\left[e_{2}, e_{3}\right]=\lambda_{3} e_{1}, \forall \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{K} \tag{7}
\end{equation*}
$$

determines 3-dimensional Hom-Lie algebra, and provide all classes and subclasses of this Hom-Lie algebra.

Example 7

When $\lambda_{1}, \lambda_{2}, \lambda_{3} \neq 0$ then, the solution set of (5) is given by

$$
\left\{a_{i j}, 1 \leq i, j \leq 3 \left\lvert\, a_{33}=-\frac{\lambda_{2}}{\lambda_{1}} a_{22}\right., a_{21}=\frac{\lambda_{1}}{\lambda_{3}} a_{13}, a_{31}=-\frac{\lambda_{2}}{\lambda_{3}} a_{12}\right\}
$$

and the resulting Hom-Lie structure is of dimension 6 given by the matrix
$[\alpha]=\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ \frac{\lambda_{1}}{\lambda_{3}} a_{13} & a_{22} & a_{23} \\ -\frac{\lambda_{2}}{\lambda_{3}} a_{12} & a_{32} & -\frac{\lambda_{2}}{\lambda_{1}} a_{22}\end{array}\right)$.

3-dimensional Hom-Lie Algebras I

Furthermore, solving (5) and (6) simultaneously we obtain the following subsets of the linear space of linear twisting maps α.
(a) When $\lambda_{1} \neq \pm \lambda_{2}$ for all $\lambda_{1}, \lambda_{2}, \lambda_{3} \neq 0,[\alpha]=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & -\frac{\lambda_{2}}{\lambda_{1}} a_{22}\end{array}\right)$, where $a_{22}^{2}=-\frac{\lambda_{1}}{\lambda_{2}}$
(b) When $\lambda_{1}=-\lambda_{2}$ for all $\lambda_{1}, \lambda_{2}, \lambda_{3} \neq 0$, then, α is given by:
(i) $\left(\begin{array}{ccc}a_{11} & \frac{\left(-1+a_{11}\right)(1+a) \lambda_{3}}{2 a_{13} \lambda_{2}} & a_{13} \\ \frac{\lambda_{1}}{\lambda_{3} a_{13}} & -\frac{1}{2}\left(1+a_{11}\right) & -\frac{a_{13} \lambda_{2}}{\left(1+a_{11}\right) \lambda_{3}} \\ \frac{\left(1-a_{11}\right)\left(1+a_{11}\right)}{2 a_{13}} & \frac{\left(-1+a_{11}\right)^{2}\left(1+a_{11}\right) \lambda_{3}}{4 a_{13} \lambda_{2}} & -\frac{1}{2}\left(1+a_{11}\right)\end{array}\right)$, for $a_{13} \neq 0, a_{11} \neq-1$

$$
\text { (ii) }\left(\begin{array}{ccc}
1 & a_{12} & 0 \\
0 & -1 & 0 \\
-\frac{\lambda_{2}}{\lambda_{3}} a_{12} & -\frac{a_{12}^{1} \lambda_{2}}{\lambda_{3}} & -1
\end{array}\right) \xrightarrow[\text { (iii) }]{\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & \frac{1}{a_{32}} \\
0 & a_{32} & 0
\end{array}\right)} \stackrel{\text { for } a_{32} \neq 0}{ } \quad \begin{array}{|ccc}
(\text { iv) }
\end{array}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

3-dimensional Hom-Lie Algebras II

(c) When $\lambda_{1}=\lambda_{2}$, for all $\lambda_{1}, \lambda_{2}, \lambda_{3} \neq 0$ then, α is given by:
(i) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & a_{22} & -\frac{1+a_{22}^{2}}{a_{32}} \\ 0 & a_{32} & -a_{22}\end{array}\right)$ for $a_{32} \neq 0$
(ii) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & -a_{22}\end{array}\right)$ where $a_{22}^{2}=-1$.

Lemma 8

Multiplicative Hom-Lie algebras arising from simple Lie algebras of $\mathfrak{s l}(2)$-type with non-zero twisting maps are regular Hom-Lie algebras.

Solvability and Nilpotency of Hom-Lie Algebras

Solvability and Nilpotency of Hom-Lie Algebras

We explore more properties of Hom-Lie algebras through its derived series and central descending series of an ideal I in \mathscr{V}.

Definition 9

Let $(\mathscr{V},[\cdot, \cdot], \alpha)$ be a Hom-Lie algebra, and $I \subseteq \mathscr{V}$ be an ideal of \mathscr{V}.
(i) A derived series of an ideal I is defined as

$$
\begin{equation*}
D^{0}(I)=I \text { and } D^{k+1}(I)=\left[D^{k}(I), D^{k}(I)\right], \tag{8}
\end{equation*}
$$

(ii) A central descending series of I is defined as

$$
\begin{equation*}
C^{0}(I)=I \text { and } C^{k+1}(I)=\left[C^{k}(I), I\right] . \tag{9}
\end{equation*}
$$

Furthermore, I is said to be solvable (resp. nilpotent) of at most class k if $D^{k}(I)=\{0\}$ (resp. $\left.C^{k}(I)=\{0\}\right)$ and $D^{k-1}(I) \neq\{0\}\left(\operatorname{resp} . C^{k-1}(I) \neq\{0\}\right)$ for some $k \in \mathbb{Z}_{>0}$.

Solvability and Nilpotency of Hom-Lie Algebras

Lemma 10
Let $(\mathscr{V},[\cdot, \cdot], \alpha)$ be a Hom-Lie algebra, and I be an ideal of \mathscr{V} for some $k \in \mathbb{Z}_{\geq 0}$, we have the following:
(i) $D^{k+1}(I) \subseteq D^{k}(I)$,
(ii) $C^{k+1}(I) \subseteq C^{k}(I)$.

Lemma 11

Let $\mathscr{A}=(\mathscr{V},[\cdot, \cdot])$ be a skew-symmetric algebra.
(i) If \mathscr{A} is nilpotent, then $Z(\mathscr{A})$ is not trivial.
(ii) If $\operatorname{dim} \mathscr{A}=3$, then $\operatorname{dim} Z(\mathscr{A})=0$ or $\operatorname{dim} Z(\mathscr{A})=1$ or $Z(\mathscr{A})=\mathscr{A}$.

Proposition 12

Let $\mathscr{A}=(\mathscr{V},[\cdot, \cdot], \alpha)$ be 3-dimensional Hom-Lie algebra, then \mathscr{A} is class 2 nilpotent if and only if $\operatorname{dim} Z(\mathscr{A})=1$ and $C^{1}(\mathscr{A})=Z(\mathscr{A})$.

Solvability and Nilpotency of Hom-Lie Algebras

Corollary 13

Let \mathscr{A} be a skew-symmetric algebra:
(1) \mathscr{A} is nilpotent of class at most r if and only if for all $1 \leq k_{0}, \ldots, k_{r} \leq n, 1 \leq t_{0} \leq n$,

$$
\begin{equation*}
\sum_{t_{1}=1}^{n} \cdots \sum_{t_{r-1}=1}^{n}\left(\prod_{j=0}^{r-2} C_{k_{j}, t_{j+1}}^{t_{j}}\right) C_{k_{r-1}, k_{r}}^{t_{r-1}}=0 \tag{10}
\end{equation*}
$$

(2) \mathscr{A} is solvable of class at most r if and only if for all $1 \leq k_{1}, \ldots, k_{2^{r}} \leq n$,

$$
\begin{equation*}
\sum_{t_{0}=1}^{n} \cdots \sum_{t_{2} r-3}^{n}\left(\prod_{j=0}^{2^{r-1}-1} C_{k_{2 j+1}, k_{2 j+2}}^{t_{j}}\right)\left(\prod_{p=0}^{2^{r-1}-2} C_{t_{2 p}, t_{2 p+1}}^{t^{r-1}+p}\right)=0 \tag{11}
\end{equation*}
$$

Solvability and Nilpotency of Hom-Lie Algebras

Remark 14

Let \mathscr{A} be a skew-symmetric algebra. If \mathscr{A} is nilpotent (resp. solvable) of class at most r then, the resulting algebraic subvariety in $\left(C_{i, j}^{k}\right)_{i<j}$ variables is determined by n^{r+2} (resp. $n^{2^{2}+1}$) homogeneous polynomial equations of degree r, (resp. $2^{r}-1$).

Lemma 15
Let $\mathscr{A}=(\mathscr{V},[\cdot, \cdot])$ be n-dimensional skew-symmetric algebra and $\alpha \in \operatorname{End}(\mathscr{V})$ be a Hom-Lie structure on \mathscr{V}. If \mathscr{A} is class 2 nilpotent, then linear space of Hom-Lie structures is of dimension n^{2}.

Example 16

Consider 3-dimensional skew-symmetric algebra $\mathscr{A}=(\mathscr{V},[\cdot, \cdot])$ with the bracket multiplication defined as $\left[e_{2}, e_{3}\right]=\lambda e_{1}$. Then, $C^{1}(\mathscr{V})=Z(\mathscr{V})=\operatorname{span}\left\{e_{1}\right\}$. Therefore, \mathscr{A} is class 2 nilpotent. Moreover, the linear space of Hom-Lie structure is of dimension 9.

Hom-subalgebras and Hom-ideals

Hom-subalgebras and Hom-ideals

We present some classes of non-multiplicative Hom-Lie algebras with the properties that their derived series and central descending series are α-invariant. We give instances when these derived algebras are Hom-subalgebras and Hom-ideals.

Proposition 17

Let $\mathscr{A}=(\mathscr{V},[\cdot, \cdot], \alpha)$ be a Hom-Lie algebra, and let $I \subseteq \mathscr{V}$ be a Hom-ideal.
(i) Then $D^{1}(I)$ and $C^{1}(I)$ are weak-ideals of \mathscr{A}.
(ii) For all $n \in \mathbb{Z}_{\geq 0}, D^{n}(I)$, and $C^{n}(I)$ are weak subalgebras of \mathscr{V} and if in addition, \mathscr{A} is multiplicative, then the subspaces $D^{n}(I)$ and $C^{n}(I)$ are Hom-subalgebras of \mathscr{A}.

Proposition 18

Let $(\mathscr{V},[\cdot, \cdot], \alpha)$ be a multiplicative Hom-Lie algebra and I be Hom-ideal of \mathscr{V}. If the linear map α is surjective then, for all $n \in \mathbb{Z}_{\geq 0}, D^{n}(I)$ and $C^{n}(I)$ are Hom-ideals.

Table 1: The linear space of Hom-Lie structures of generalized Hom-Lie algebras of $\mathfrak{s l}(2)$-type, multiplicative Hom-Lie algebras, Hom-ideals, and solvability and nilpotency properties.

Structure Constants	$[\alpha]$ such that $(\mathscr{V},[\cdot, \cdot], \alpha)$ is a Hom-Lie algebra	Derived Series, Central descending series of \mathscr{V}	$[\alpha]$ such that $C^{r}(\mathscr{V}), D^{r}(\mathscr{V})$ are α-invariant	1-dim weak ideal and $[\alpha]$ that turn them into Hom-ideals	$[\alpha]$ such that $(\mathscr{V},[\cdot, \cdot], \alpha)$ is multiplicative
$\begin{gathered} \lambda_{1}=0 \\ \lambda_{2}, \lambda_{3} \neq 0 \end{gathered}$	$\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & 0 & a_{23} \\ -\frac{\lambda_{2}}{\lambda_{3} a_{12}} & a_{32} & a_{33}\end{array}\right)$	Not nilpotent Class-3-Solvable			
		$\begin{gathered} \text { For all } r \geq 1 \\ C^{r}(\mathscr{V})=\operatorname{span}\left\{e_{1}, e_{3}\right\} \end{gathered}$	$a_{21}=a_{23}=0$		
		$=D^{1}(\mathscr{Y})$ Weak ideal	$\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ -\frac{\lambda_{2}}{\lambda_{3}} a_{12} & a_{32} & a_{33}\end{array}\right)$		$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & a_{32} & 0\end{array}\right)$
		$D^{2}(\mathscr{V})=\operatorname{span}\left\{e_{3}\right\}$ Not weak ideal	$\left(\begin{array}{ccc}a_{13}=a_{23}=0 \\ a_{11} & a_{12} & 0 \\ a_{21} & 0 & 0 \\ -\frac{\lambda_{2}}{\lambda_{3}} a_{12} & a_{32} & a_{33}\end{array}\right)$		

A_{1}

Hom-subalgebras and Hom-ideals

Remarks
(i) In both cases 1 and 2, the triple $(\mathscr{V},[\cdot, \cdot], \alpha)$ defines a Hom-Lie algebra. However, the bilinear bracket multiplication do not define a Lie algebra.
(ii) In Case 3, we note that this algebra not Hom-simple in general, because there exists a Hom-ideal $I=\operatorname{span}\left\{e_{2}, e_{3}\right\}$.

References

[1] Kitouni, A., Makhlouf, A. and Silvestrov, S. (2016). On ($n+1$)-Hom-Lie algebras induced by n-Hom-Lie algebras., Georgian Mathematical Journal, 23(1). doi:https://doi.org/10.1515/gmj-2015-0063.
[2] Ongong'a, E., Richter, J. and Silvestrov, S. (2019). Classification of 3-dimensional Hom-Lie algebras, Journal of Physics: Conference Series, 1194, p. 012084. doi:https://doi.org/10.1088/1742-6596/1194/1/012084.
[3] Makhlouf, A. and Silvestrov, S.D. (2008). Hom-algebra structures., Journal of Generalized Lie Theory and Applications, 2(2), pp.51-64. doi:https://doi.org/10.4303/jglta/s070206.
[4] Remm, E. (2018). 3-Dimensional Skew-symmetric Algebras and the Variety of Hom-Lie Algebras., Algebra Colloquium, 25(04), pp.547-566. doi:https://doi.org/10.1142/s100538671800038x.

Thank you!

