Strange algebra identities

Vladimir G. Tkachev

https://www.linkedin.com/pulse/binary-tree-ai-ds-sourav-sinha-babu-a/

Preliminaries

- \mathbf{K} is a field of characteristic not equal to 2 and 3 ;
- \mathbb{A} is a commutative but nonassociative algebra with multiplication \bullet over \mathbf{K}
- $L(x) y:=x \bullet y$;
- $\operatorname{Idm}(\mathbb{A})$ is the set of nonzero algebra idempotents;
- given $x \in \mathbb{A},\langle\langle x\rangle\rangle$ denotes the subalgebra generated by x;
- a nonasociative monomial x^{α} is an element of the multiplicative magma $\langle\langle x\rangle\rangle$;
- there is a natural grading on nonaasociative monomials $x^{\alpha}: \operatorname{deg}: x^{\alpha} \rightarrow \mathbb{Z}^{+}$;
- a linear combination of x^{α} is a nonassociative polynomial P in x;
- $P=0$ is an identity on \mathbb{A} if $P(x)=0$ for any $x \in \mathbb{A}$;

Remark

One of the most interesting features of the concepts considered below is their applications to study of fusion rules, but we don't consider this issue in our present talk. A part of material below is based on my paper The universality of one half in commutative nonassociative algebras with identities. J. Algebra, 569, 466-510, 2021.

Preliminaries

There are two special nonassociative monomials parametrized by \mathbb{N} :

- principal powers: $x^{0}:=1 \in \mathbf{K}, x^{1}:=x$ and $x^{n}:=x \bullet x^{n-1}, n \geq 2$;
- plenary powers: $x^{[1]}:=x$ and $x^{[n]}:=x^{[n-1]} \bullet x^{[n-1]}, n \geq 2$;

Observe that

$$
\operatorname{deg} x^{n}=n, \quad \operatorname{deg} x^{[n]}=2^{n-1} .
$$

For example,

$$
x, \quad x^{2}=x \bullet x, \quad x^{3}=(x \bullet x) \bullet x, \quad x^{[3]}=(x \bullet x) \bullet(x \bullet x), \ldots
$$

A general monomial can have a very involved structure, for example

$$
(x \bullet x) \bullet((((x \bullet x) \bullet x) \bullet x) \bullet(x \bullet x))=x^{[2]} \bullet\left(x^{4} \bullet x^{[2]}\right)
$$

It is natural to represent monomials by binary trees, for example

There exists a one-to-one correspondence between

- nonassociative monomials x^{α} of degree n;
- parenthesizations on n symbols,
- (labeled full) binary trees with n leaves,
- path-length sequences $\left[k_{1}, \ldots, k_{m}\right]$ such that $\sum_{i=1}^{m} \frac{1}{2^{k_{i}}}=1$. Here, k_{i} is the number of paths connecting the i th leaf with the parent.

For example, $x^{2} \bullet x^{2}=(x \bullet x) \bullet(x \bullet x)$ is represented by the tree

and the tree's path-length sequence $[2,2,2,2]$, where $\sum_{i=1}^{4} \frac{1}{2^{2}}=1$.

Proposition [Knuth, 2.3.4.5, M24]

Given any sequence $\left[k_{1}, \ldots, k_{m}\right]$ such that $\sum_{i=1}^{m} \frac{1}{2^{k_{i}}}=1$ there exists a binary tree such that [k_{1}, \ldots, k_{m}], maybe reordered, is its path-length sequence.

Given a multiset A of numbers we denote by $|A|=\sum_{a \in A} a$.

Lemma 1

(i) Let A be a multiset of cardinality at least 2 consisting of nonnegative powers of 2, and such that $|A|=2^{L}$ for some integer L. Then one can split $A=A^{\prime} \sqcup A^{\prime \prime}$ into two subsets such that $\left|A^{\prime}\right|=\left|A^{\prime \prime}\right|=2^{L-1}$.
(ii) Let A be a multiset of cardinality at least 2 consisting of nonpositive powers of 2 , and such that $|A|=1$. Then one can split $A=A^{\prime} \sqcup A^{\prime \prime}$ into two subsets such that $\left|A^{\prime}\right|=\left|A^{\prime \prime}\right|=\frac{1}{2}$.

Corollary 2

Given any sequence $\left[k_{1}, \ldots, k_{m}\right]$ such that $\sum_{i=1}^{m} \frac{1}{2^{k_{i}}}=1$ there exists a binary tree such that [k_{1}, \ldots, k_{m}], maybe reordered, is its path-length sequence.

Proof. (i) Let $A^{\prime} \subset A$ be a proper subset such that $\left|A^{\prime}\right|<2^{L-1}$. If $A^{\prime \prime}=A \backslash A^{\prime}$ then

$$
\Delta:=2^{L-1}-\left|A^{\prime}\right|=\left|A^{\prime \prime}\right|-2^{L-1}=\left(2^{x_{1}}+\ldots+2^{x_{m}}\right)-2^{L-1}
$$

where the RHS is divisible by the smallest power $2^{x_{m}}$. Then $\Delta \geq 2^{x} m$, hence sending $2^{x_{m}}$ to the LHS obtain

$$
\left|A^{\prime} \sqcup\left\{2^{x_{m}}\right\}\right|=\left|A^{\prime}\right|+2^{x_{m}}=\left(2^{L-1}-\Delta\right)+2^{x_{m}} \leq 2^{L-1} .
$$

Repeating the process implies the desired conclusion in (i).

$$
\begin{gathered}
A=\left\{\left(\frac{1}{2^{6}}\right)^{\# 6},\left(\frac{1}{2^{5}}\right)^{\# 3},\left(\frac{1}{2^{4}}\right)^{\# 7},\left(\frac{1}{2^{3}}\right)^{\# 3}\right\} \text { satisfies }|A|=\frac{6}{2^{6}}+\frac{3}{2^{5}}+\frac{7}{2^{4}}+\frac{3}{2^{3}}=1 \text {. A particular solution } \\
\underbrace{\underbrace{\frac{1}{2^{3}}+\frac{1}{2^{3}}}_{=\frac{1}{4}}+\underbrace{\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{4}}}_{=\frac{1}{4}}=\underbrace{\underbrace{\underbrace{\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{5}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}+\ldots+\frac{1}{2^{6}}}_{=\frac{1}{4}}}_{=\frac{1}{2^{4}}+\frac{1}{2^{4}}+\frac{1}{2^{4}}+\frac{1}{2^{4}}}}_{=\frac{1}{2}} .}_{=\frac{1}{4}} .=\underbrace{=}_{=1}
\end{gathered}
$$

corresponds to the binary tree $[3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6]$

Observe that one can shuffle some 'branches' such that the resulting tree will be different but still have the same unordered path-length sequence. It is natural to call such trees by isomers.

So what is this all about and why?...

The Peirce polynomial

Example 1

By definition, an algebra is power-associative if any subalgebra $\langle\langle x\rangle\rangle$ is associative. In the commutative case this is equivalent to that the following identity holds:

$$
\begin{equation*}
P(x):=x^{4}-x^{2} \bullet x^{2}=0 \tag{1}
\end{equation*}
$$

Indeed, the linearization yields

$$
\begin{equation*}
2 L(x)^{3}+L(x) L\left(x^{2}\right)-4 L\left(x^{2}\right) L(x)+L\left(x^{3}\right)=0 \tag{2}
\end{equation*}
$$

and conversely, (2) implies (1). Next, by (1): $\left(x^{2} \bullet x^{2}\right) \bullet x=x^{5}$ and applying (2) to x^{2} gives $x^{2} \bullet x^{3}=x^{5}$. This implies the desired conclusion by induction. If $c \in \operatorname{Idm}(\mathbb{A})$ then (2) becomes

$$
\begin{equation*}
\underbrace{2 L(c)^{3}-3 L(c)^{2}+L(c)}_{\text {the Peirce polynomial }}=\underbrace{(2 L(c)-1)(L(c)-1) L(c)=0}_{\text {implies the Peirce spectrum }} \tag{3}
\end{equation*}
$$

This yields the corresponding Peirce decomposition:

$$
\mathbb{A}=\mathbb{A}_{1} \oplus \mathbb{A}_{0} \oplus \mathbb{A}_{\frac{1}{2}}
$$

The Peirce polynomial

Example 2.

A Bernstein algebra is a commutative algebra with a nontrivial algebra homomorphism $\omega: \mathbb{A} \rightarrow \mathbf{K}$ satisfying the following (genetic type) identity:

$$
\begin{equation*}
x^{2} \bullet x^{2}-\omega(x)^{2} x^{2}=0 \tag{4}
\end{equation*}
$$

Then linearization yields $4 x^{2} \bullet(x \bullet y)-2 \omega(x)^{2} x \bullet y-2 \omega(x) \omega(y) x^{2}=0$, hence

$$
4 L\left(x^{2}\right) L(x)-2 \omega(x)^{2} L(x)-2 \omega(x) x^{2} \otimes \omega^{*}=0
$$

If $x=c$ is a nonzero idempotent then $\omega(c)=1$ and

$$
4 L(c)^{2}-2 L(c)-2 c \otimes \omega^{*}=0
$$

In particular, if x is an eigenvector of $L(c)$ then

$$
\underbrace{\left(4 L(c)^{2}-2 L(c)\right)}_{\text {the Peirce polynomial }} x=\underbrace{2 c \otimes \omega^{*}}_{\text {must be zero }}=0 .
$$

Some further examples of binomial identities

- Quasicomposition algebras:

$$
\begin{equation*}
x^{3}-Q(x) x=0, \tag{5}
\end{equation*}
$$

where Q is a quadratic form.

- The Elduque-Okubo algebras:

$$
\begin{equation*}
x^{2} \bullet x^{2}-N(x) x=0, \tag{6}
\end{equation*}
$$

where $N(x)$ is a cubic form.

- The Bernstein algebras:

$$
\begin{equation*}
x^{2} \bullet x^{2}-\omega(x)^{2} x^{2}=0, \tag{7}
\end{equation*}
$$

where $\omega: \mathbb{A} \rightarrow \mathbf{K}$ is a homomorphism.

- A strange identity:

$$
\begin{equation*}
\left(x^{3}\right)^{2}-\left(x^{2}\right)^{3}=0 \tag{8}
\end{equation*}
$$

Observations: algebras satisfying (8):

- any algebra with $\mathbb{A}^{3}=0$;
- any power-associative algebra (in particular, any Jordan algebra);
- any medial algebra (indeed, $(x \bullet x) \bullet\left(x^{2} \bullet x^{2}\right)=\left(x \bullet x^{2}\right) \bullet\left(x \bullet x^{2}\right)$).

The Peirce polynomial

$f(x)$ is a homogeneous polynomial function of order m if $\Delta_{m} f=0$ and $f(\lambda x)=\lambda^{m} f(x)$.
We consider a commutative algebra \mathbb{A} satisfying a homogeneous identity of the kind

$$
\begin{equation*}
P:=\sum_{\alpha} \phi_{\alpha}(x) x^{\alpha}=0 \tag{9}
\end{equation*}
$$

where $\phi_{\alpha}(x)$ are homogeneous polynomial functions. To any such polynomial one associate the so-called Perice polynomial (linearization evaluated at an idempotent c). More precisely,

$$
\underbrace{D_{y}(P(x))}_{\text {at } c}=\varrho_{c}(P, L(c))+c \otimes(\ldots)
$$

where $\varrho_{c}(P, L(c))$ is a certain polynomial in $L(c)$ over \mathbf{K}. In particular,

$$
\varrho_{c}(P, L(c))=0 \quad \text { on any proper eigensubspace of } L(c)
$$

Definition. Given an idempotent c, the Peirce polynomial $\varrho_{c}(P ; q) \in \mathbf{K}[q]$ is defined by

$$
\varrho_{c}\left(\sum_{\alpha} \phi_{\alpha}(x) x^{\alpha}, q\right):=\sum_{\alpha} \phi_{\alpha}(c) \rho\left(x^{\alpha}, q\right)
$$

where ρ is the Peirce operator defined below.
(i) Given a formal indeterminate q, the Peirce operator

$$
\rho:\langle\langle x\rangle\rangle \rightarrow \mathbb{Z}[q]
$$

is uniquely determined by $\rho(x, q)=1$ and the recurrence relation

$$
\begin{equation*}
\rho\left(x^{\alpha} x^{\beta}, q\right)=q \cdot\left(\rho\left(x^{\alpha}, q\right)+\rho\left(x^{\beta}, q\right)\right) \tag{10}
\end{equation*}
$$

(ii) Alternatively, by means of the tree's path-length sequence one has an explicit expression

$$
\rho\left(\left[k_{1}, k_{2}, \ldots, k_{m}\right], q\right)=\sum_{i=1}^{m} q^{k_{i}}
$$

For example, $\rho\left(x^{3}, q\right)=\rho([1,2,2], q)=q^{1}+q^{2}+q^{2}=2 q^{2}+q$, or

By Corollary 2 (or by induction), for any binary tree one has

$$
\rho\left(x^{\alpha}, \frac{1}{2}\right)=\sum_{i=1}^{m} \frac{1}{2^{k_{i}}}=1
$$

Some further examples:

$$
\begin{align*}
\rho\left(x^{2}, q\right) & =2 q \\
\rho\left(x^{3}, q\right) & =2 q^{2}+q \\
\rho\left(x^{4}, q\right) & =2 q^{3}+q^{2}+q \tag{11}\\
\rho\left(x^{2} \bullet x^{2}, q\right) & =4 q^{2} \\
\rho\left(\left(x^{2} \bullet x^{2}\right) \bullet x, q\right) & =4 q^{3}+q
\end{align*}
$$

Remark. Given a Peirce polynomial, the corresponding unordered path-length sequence can be restored, for example,

$$
q+4 q^{3} \quad \rightarrow \quad q+\underbrace{q^{3}+\ldots+q^{3}}_{4 \text { times }} \rightarrow[1,3,3,3,3] \quad \rightarrow \quad x \bullet\left(x^{2} \bullet x^{2}\right)
$$

Corollary 2 implies

Proposition 1

For any nonassiciative monomial $x^{\alpha}, P\left(x^{\alpha}, q\right) \in \mathbb{Z}^{+}[q]$ and $P\left(x^{\alpha}, \frac{1}{2}\right)=1$. Conversely, if $Q \in \mathbb{Z}^{+}[q]$ and $Q\left(\frac{1}{2}\right)=1$ then there exists a monomial x^{α} such that $Q(q)=P\left(x^{\alpha}, q\right)$.

Remarks

- There is no Peirce polynomial of the kind

$$
P\left(x^{\alpha}, q\right)=3 q^{3}+\text { lower degree terms } .
$$

Indeed, if $P\left(x^{\alpha}, q\right)=3 q^{3}+a q^{2}+b q$ (the constant term must be zero because $\left.P\left(x^{\alpha}, \frac{1}{2}\right)=1\right)$, then $2 a+4 b=5$, a contradiction.

- In general, the leading coefficient must be even. For example, it easy to see that $P\left(x^{\alpha}, q\right)=6 q^{3}+$ lower degree terms implies $6 q^{3}+q^{2}$ and uniquely determines $x^{\alpha}=\left(x^{2} \bullet x^{2}\right) \bullet x^{3}$.
- Isomeric binary trees have the same Peirce polynomial, for example $\left(x^{3}\right)^{2}$ and $\left(x^{2}\right)^{3}$.

The multiplication of two monomials $x^{\alpha} \bullet x^{\beta}$ imply the operation of merging of the corresponding Peirce polynomials $P \star Q$.
It follows from the definition (10) that this merging (fusion) is an isotopy of the standard associative addition, therefore the resulting operation is a medial magma. More precisely:

The set of polynomials

$$
\Omega:=\left\{Q \in \mathbb{Z}^{+}[q]: \quad Q\left(\frac{1}{2}\right)=1\right\}
$$

is a medial magma with respect to

$$
P \star Q:=q \cdot(P+Q) .
$$

Indeed,

$$
(P \star Q) \star(R \star T)=q^{2}(P+Q+R+T)
$$

The universality of $\frac{1}{2}$

Theorem 3 (V.T., J. Algebra, 2021)

Let a commutative algebra \mathbb{A} satisfy $P:=\sum_{\alpha} \phi_{\alpha}(x) x^{\alpha}=0$ and $c \in \operatorname{Idm}(\mathbb{A})$. Then

$$
\rho\left(P, \frac{1}{2}\right)=0
$$

If additionally c is semi-simple and λ is a simple root of the Peirce polynomial $\varrho_{c}(P, t)$ then

$$
\begin{equation*}
\mathbb{A}_{c}(\lambda) \mathbb{A}_{c}\left(\frac{1}{2}\right) \subset \bigoplus_{\nu \in \sigma(c), \nu \neq \lambda} \mathbb{A}_{c}(\nu) \tag{12}
\end{equation*}
$$

Example. For power-associative algebra identity one obtains (cf. with (3))

$$
\rho\left(x^{4}-x^{2} \bullet x^{2}, q\right)=\left(2 q^{3}+q^{2}+q\right)-4 q^{2}=q(q-1)(2 q-1) .
$$

Binomials

Let us consider homogeneous binomials, i.e. nonassociative polynomials with two terms with coefficients in K. If such an algebra contains a nonzero idempotent, it is necessarily that the identity has the form

$$
x^{\alpha}-x^{\beta}=0, \quad \operatorname{deg} x^{\alpha}=\operatorname{deg} x^{\beta} .
$$

Except of (1) in degree 4, there are $\binom{3}{2}=3$ binomials in degree 5

$$
\begin{aligned}
& S_{1}:=x^{5}-\left(x^{2} \bullet x^{2}\right) \bullet x \\
& S_{2}:=x^{5}-x^{2} \bullet x^{3}, \\
& S_{3}:=\left(x^{2} \bullet x^{2}\right) \bullet x-x^{2} \bullet x^{3}=S_{2}-S_{1},
\end{aligned}
$$

which imply respectively the corresponding Peirce polynomials

$$
\begin{aligned}
& \rho\left(S_{1}, q\right)=\left(2 q^{4}+q^{3}+q^{2}+q\right)-\left(4 q^{2}+1\right) q=q^{2}(q-1)(2 q-1) \\
& \rho\left(S_{2}, q\right)=\left(2 q^{4}+q^{3}+q^{2}+q\right)-\left(2 q^{2}+3 q\right) q=q(q-1)(q+1)(2 q-1) \\
& \rho\left(S_{3}, q\right)=q(q-1)(2 q-1)
\end{aligned}
$$

Degenerate identities

But in degree 6, for the first time appears an nonzero identity with zero Peirce polynomial,

$$
\begin{equation*}
R:=\left(x^{3}\right)^{2}-\left(x^{2}\right)^{3}=0 . \tag{13}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& \rho\left(\left(x^{3}\right)^{2}, q\right)=2 \rho\left(x^{3}, q\right) \cdot q=2\left(2 q^{2}+q\right) q \\
& \rho\left(\left(x^{2}\right)^{3}, q\right)=\left(\rho\left(\left(x^{2}\right)^{2}, q\right)+\rho\left(x^{2}, q\right)\right) \cdot q=\left(4 q^{2}+2 q\right) q
\end{aligned}
$$

implies $\rho(R, q)=0$.

Remarks.

- In [V.T., 2021] we referred to such identities as degenerated identities. In particular this implies that the Peirce spectrum is undetermined for any algebra idempotent.
- In [Varro, 2020]: such identities are called evanescent. Varro studies these in the context of baric train algebras.

Decomposable degenerate identities

Let ω be a baric homomorphism on \mathbb{A} and suppose \mathbb{A} satisfy

$$
P:=x^{2} \bullet x^{2}-2 \omega(x) x^{3}+\omega(x)^{2} x^{2}=0
$$

Then P is degenerated: $\rho(P, q)=0$. Algebras with $P=0$ were studied in [Ouattara-Zitan et al., J. Alg., 2010] and later by Elduque and Labra [J. Alg. Appl,, 2013], where it was proven that the 'gametization' of the original multiplication in \mathbb{A} to $x \star y=x y-\frac{1}{2} \omega(x) y-\frac{1}{2} \omega(y) x$ satisfies the plenary nilpotent identity $x^{\star 2} \star x^{\star 2}=0$, while $\mathbb{A}^{\star 2} \neq \mathbb{A}$. Note that P is decomposable:

$$
P=\left(x^{2}-\omega(x) x\right)^{2} .
$$

Theorem (V.T., 2021)

Let \mathbb{A} be an algebra with identity $P(z)=0$ such that $P=P_{1} \bullet P_{2}$ is decomposable in the free nonassociative algebra $\mathbf{K}(\langle\langle x\rangle\rangle)$. Then for any nonzero idempotent c of A there holds

$$
\varrho_{c}\left(P_{1}, \frac{1}{2}\right) \varrho_{c}\left(P_{2}, \frac{1}{2}\right)=0 .
$$

Furthermore,

- if $\varrho_{c}\left(P_{1}, \frac{1}{2}\right)=\varrho_{c}\left(P_{2}, \frac{1}{2}\right)=0$ then P is a degenerated identity;
- if $\varrho_{c}\left(P_{i}, \frac{1}{2}\right)=0$ and $\varrho_{c}\left(P_{j}, \frac{1}{2}\right) \neq 0$ then $\sigma(P, c)=\{0\} \cup \sigma\left(P_{i}, c\right)$.

In particular, if $P=P_{1}^{2}$ then the identity P is degenerated.

Grafting

Given an algebra identity P, one frequently use its 'derivatives', i.e. an identity P_{1} (normally of a higher order) obtained from the linearization of the original identity. In this case, any algebra satisfying $P=0$ also satisfies $P_{1}=0$. We briefly consider the simplest variant of this construction below.

Given a nonassociative polynomial, one can substitute another monomial (grafting) as follows:

$$
\begin{aligned}
& x^{3} \rightarrow D\left(x^{3} ; y\right)=2 x \bullet(x \bullet y)+x^{2} \bullet y \\
& \text { replace } y \text { by } x^{2} \\
& \rightarrow 2 x \bullet\left(x \bullet x^{2}\right)+x^{2} \bullet x^{2}=2 x^{4}+x^{2} \bullet x^{2},
\end{aligned}
$$

while

$$
x^{2} \rightarrow D\left(x^{2} ; y\right)=2 x \bullet y \quad \rightarrow \quad \text { replace } y \text { by } x^{3} \quad \rightarrow \quad 2 x \bullet x^{2} .
$$

We denote this by $D\left(x^{3} ; x^{2}\right)$, or in general by $D(P ; Q)$.

Theorem 4

$$
\rho(D(P ; Q), q)=\rho(P, q) \cdot(\rho(Q, q)+(\rho(P, 1)-1) \rho(Q, 1)) .
$$

In particular,

- The Peirce spectrum increases w.r.t. grafting.
- A grafting of a strange polynomial is a strange polynomial again.

Definition

Two monomials x^{α} and x^{β} are isomeric ($x^{\alpha} \simeq x^{\beta}$) if any of the following equivalent conditions satisfied:

- $\rho\left(x^{\alpha}\right)=\rho\left(x^{\beta}\right)$.
- The unordered path-length sequences of x^{α} and x^{β} coincide.

Some relevant questions

- How to characterize two isomeric monomials?
- How to classify algebras satisfying 'strange' identities, i.e. $x^{\alpha}-x^{\beta}=0$ for some $\rho\left(x^{\alpha}\right)=\rho\left(x^{\beta}\right)$.
- What is about the simplest nontrivial case $R:=\left(x^{3}\right)^{2}-\left(x^{2}\right)^{3}=0$?
- Do there exist any algebras satisfying this identity distinct from medial, power-associative or three-nilpotent ones?

THANK YOU FOR YOUR ATTENTION!

https://www.linkedin.com/pulse/binary-tree-ai-ds-sourav-sinha-babu-a/

