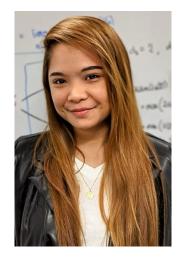
News on the Graded Classification Conjecture for Leavitt Path Algebras

joint work with R. Hazrat, A. Sebandal

Wolfgang Bock Linnæus Universitetet, Vä×jö, Sweden

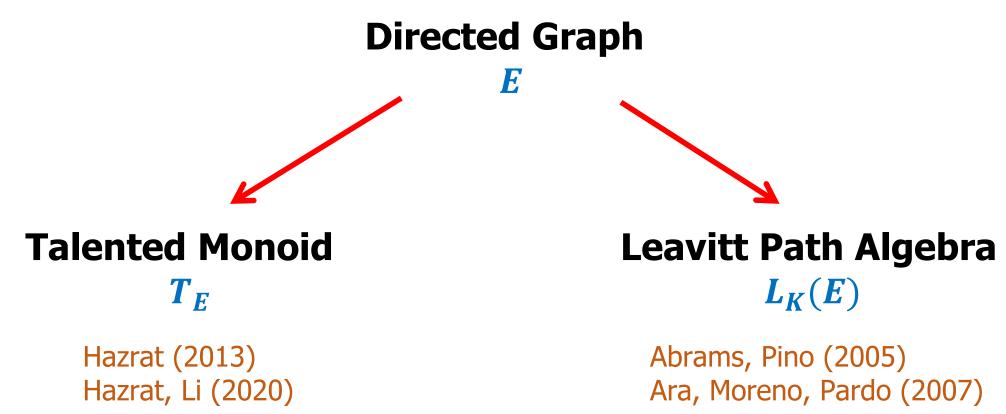
SNAG, BTH, 2025

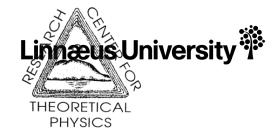


Roozbeh Hazrat Western Sydney University

Alfilgen Sebandal Linnaeus University/ RCTP Jagna, PH

W. Bock, R. Hazrat, A. Sebandal The graded classification conjectures hold for various finite representations of Leavitt path algebras *Journal of Algebra,* Volume 672, 15 June 2025, Pages 303-333





R. Hazrat (2013)

Graded Classification Conjecture

For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr - L_K(E) \approx_{gr} Gr - L_K(F)$$

 \mathbb{Z} -isomorphism of talented monoids

Graded equivalence of **categories of graded modules** over the Leavitt path algebra

R. Hazrat (2013)

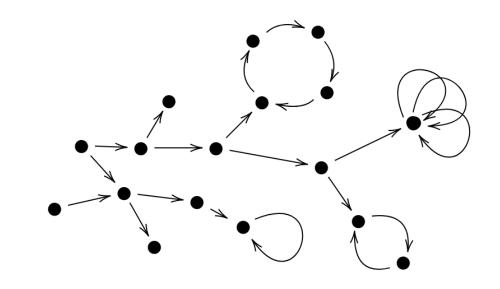
Graded Classification Conjecture

For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr - L_K(E) \approx_{gr} Gr - L_K(F)$$

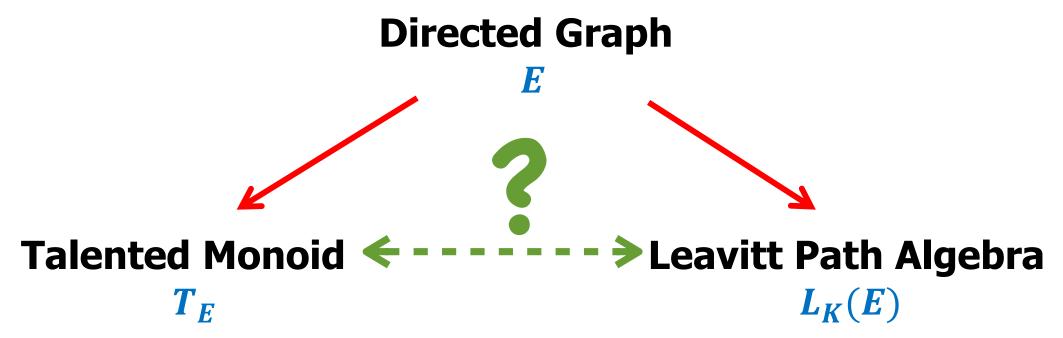
Graded Classification Theorem: for Polycephaly Graphs

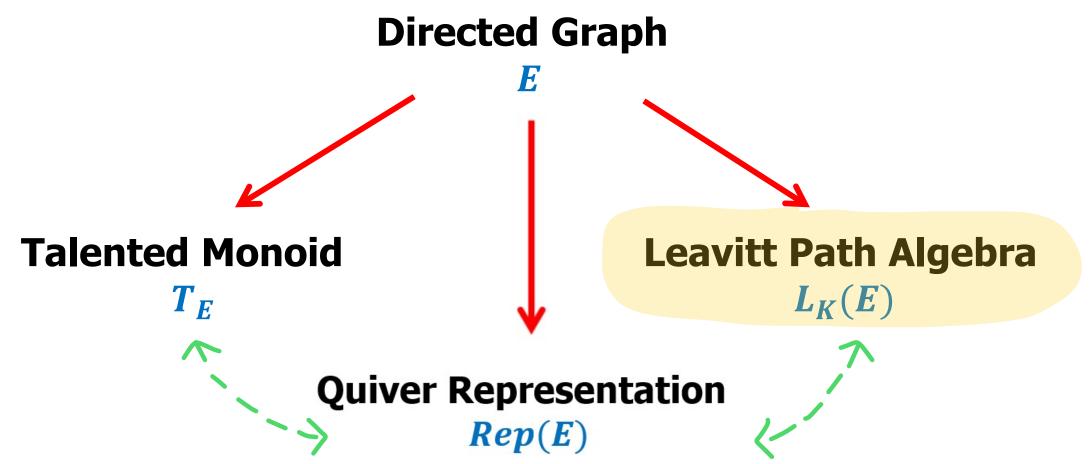
Directed Graph



Polycephaly Graph

 $E = (E^{\circ}, E^{\perp}, s, r)$ $s_{,r}: E^{\perp} \rightarrow E^{\circ}$ $s(e) \xrightarrow{e} r(e)$ source of e range of e





Path Algebra

U

For a graph *E* and a ring *R* with identity, the *Path algebra* of *E*, denoted by $P_K(E)$, is the R-algebra generated by the sets $\{v : v \in E^0\}$ and $\{e : e \in E^1\}$ with coefficients in *R*, subject to the relations:

(V)
$$v_i \cdot v_j = \delta_{i,j} v_i$$
 for every $v_i, v_j \in E^0$;

(E)
$$s(e) \cdot e = e = e \cdot r(e)$$
 for $e \in E^1$.

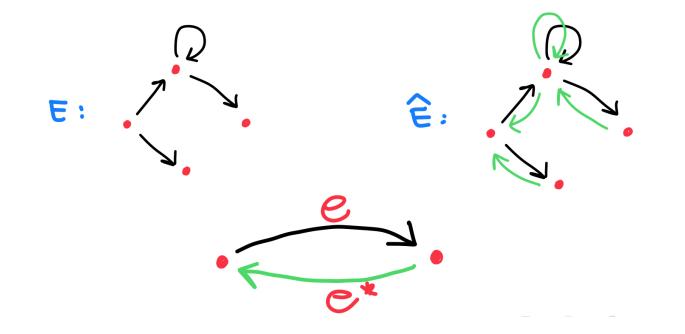
$$(V) \quad uu = u$$
$$uv = 0$$
$$(E) \quad ue = e = ev$$
$$(E) \quad ue = e = ev$$

Linnæus University 🏋

Another way of looking at it... In K(E°UE1): vv + vw + uf + fq $P_{k}(E) = \frac{k\langle E^{\circ} \cup E^{\perp} \rangle}{\langle (N), (E) \rangle}$ In PR(E): e u f E: =gof = 0 Ĵ = v + fsK

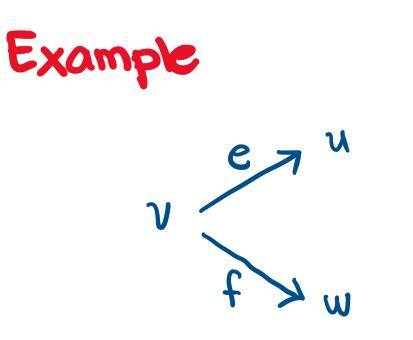
Leavitt Path Algebra

For a graph *E* and a ring *R* with identity, the *Leavitt path algebra* of *E*, denoted by $L_R(E)$, is the path algebra over the double graph \hat{E} with additional relations



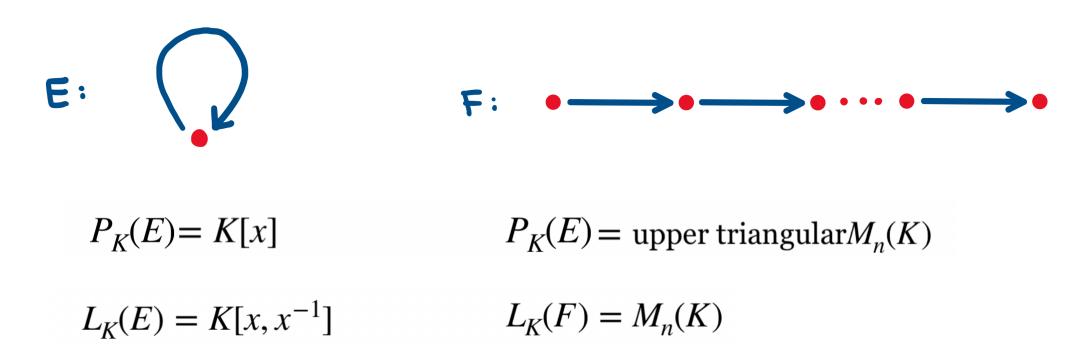
For a graph *E* and a ring *R* with identity, the *Leavitt path algebra* of *E*, denoted by $L_R(E)$, is the path algebra over the double graph \hat{E} with additional relations

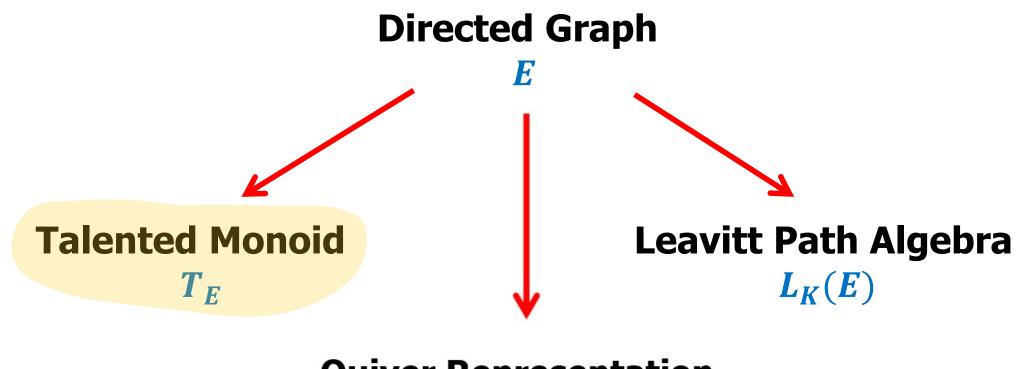
(CK1)
$$e^{*}f = \delta_{e,f}r(e)$$
 for all $e, f \in E^{1}$;
(CK2) $v = \sum_{e \in s^{-1}(v)} ee^{*}$ for every $v \in Reg(E)$.
 $L_{K}(E) = \frac{P_{K}(E)}{\langle CK1, CK2 \rangle}$



(CK1) $e^*e = r(e) = u$ $f^{\star}f = \iota(t) = m$ $e^{*}f = 0 = f^{*}e$ (CK2) $v = ee^* + ff^*$

Fundamental Examples





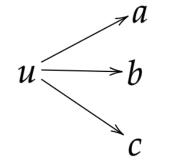
Quiver Representation <u>Rep(E)</u>

Linnæus University 🎬

Let *E* be a row-finite graph. The *talented monoid* of *E*, denoted by T_E , is the abelian monoid generated by $\{v(i) : v \in E, v \in \mathbb{Z}\}$, subject to

$$v(i) = \sum_{e \in s^{-1}(v)} r(e)(i+1)$$

for every $i \in \mathbb{Z}$ and every $v \in E^0$ that is not a sink.



$$u(1) = a(1+1) + b(1+1) + c(1+1)$$
$$= a(2) + b(2) + c(2)$$

Linnæus University 🏋

subj

Let *E* be a row-finite graph. The *talented monoid* of *E*, denoted by T_E , is the abelian monoid generated by $\{v(i) : v \in E^0, i \in \mathbb{Z}\}$, subject to

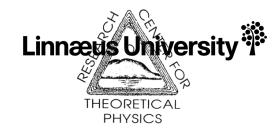
$$v(i) = \sum_{e \in s^{-1}(v)} r(e)(i+1)$$

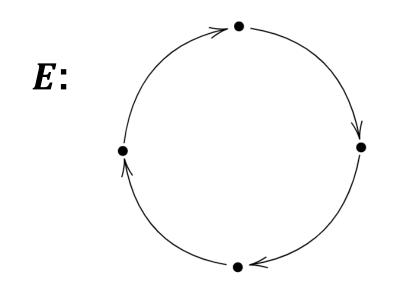
for ϵ

for every $i \in \mathbb{Z}$ and every $v \in E^0$ that is not a sink.

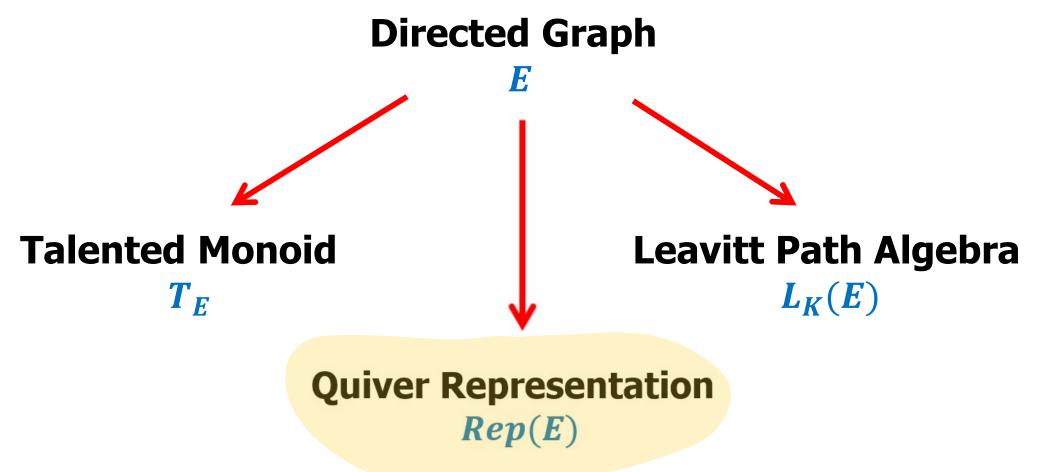
Ara, Hazrat, Li, Sims (2018)

 T_E - monoid of graded finitely generated projective modules over $L_K(E)$





$T_E = \mathbb{N} \oplus \mathbb{N} \oplus \mathbb{N} \oplus \mathbb{N}$

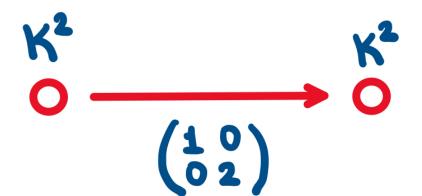


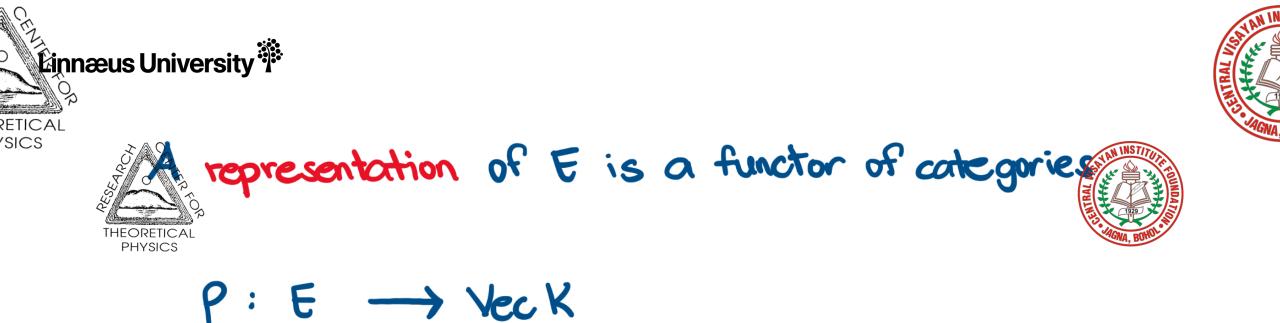
, in hæus University 🏋

HEORETICAL PHYSICS

E - directed graph

- putting vector spaces on vertices and linear transformations on arrows

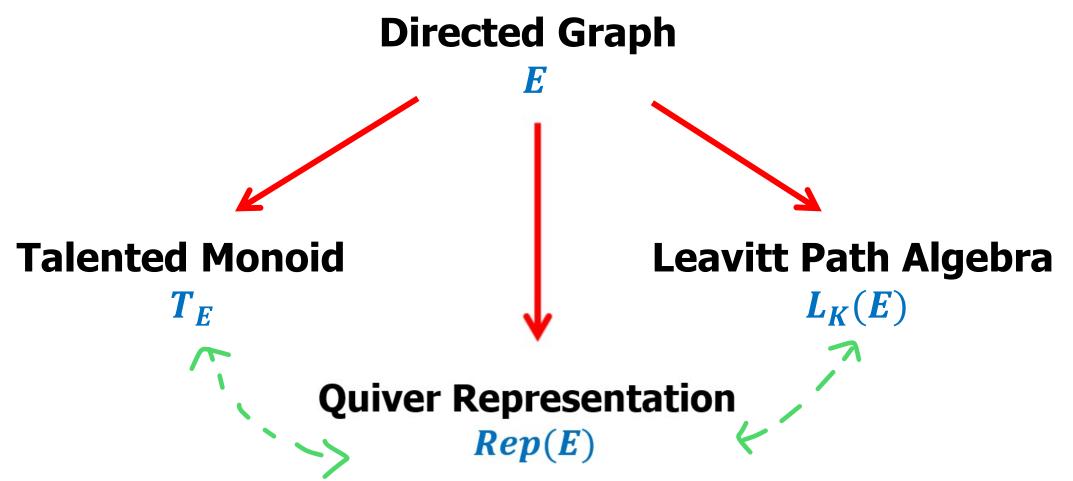




$$V \mapsto p(v) - vector space over K$$

 $u \xrightarrow{e} v \mapsto p(u) \xrightarrow{p(e)} p(v) - linear transformation$

Rep(E) - category of representations of E



R. Hazrat (2013)

Graded Classification Conjecture

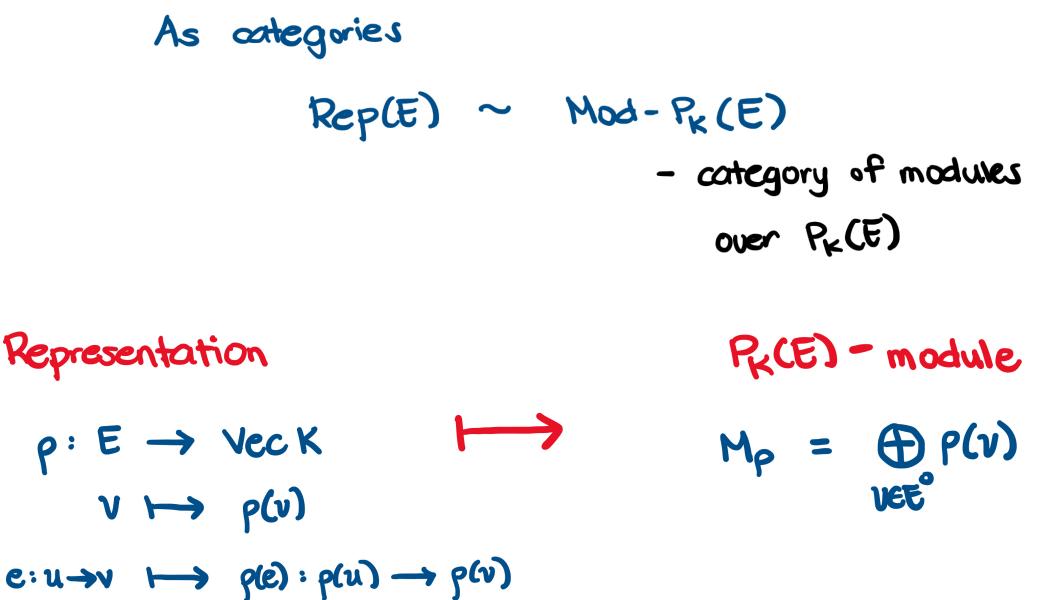
For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr-L_K(E) \approx_{gr} Gr-L_K(F)$$

Z-isomorphism of talented monoids

Graded equivalence of **categories of graded modules** over the Leavitt path algebra

Linnæus University 🎬



For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr - L_K(E) \approx_{gr} Gr - L_K(F)$$

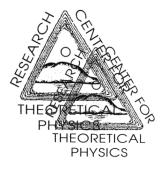
As contegories Rep(E) ~ Mod - P_k(E) - contegory of modules over P_k(E)



For finite graphs *E* and *F*:

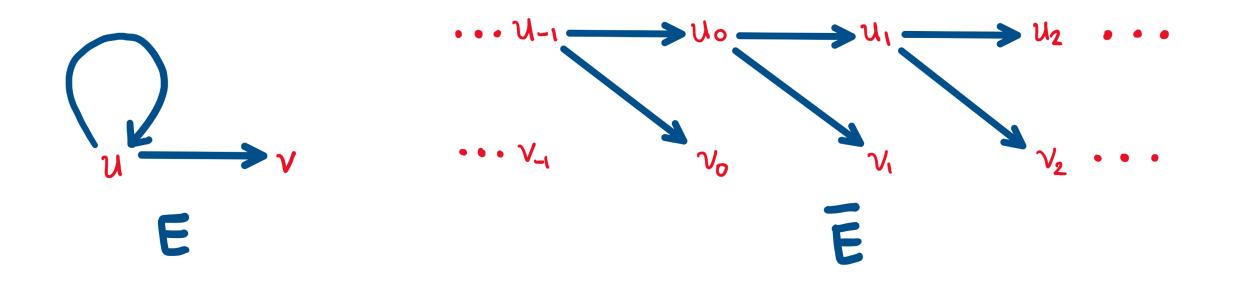
$$T_E \cong T_F \iff Gr - L_K(E) \approx_{gr} Gr - L_K(F)$$

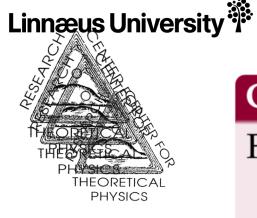
Graph ECovering Graph E
$$E = (E^{\circ}, E^{\perp}, r, s)$$
 $\overline{E} = (\overline{E}^{\circ}, \overline{E}^{\perp}, \overline{r}, \overline{s})$ $\overline{E}^{\circ} = [v_i : veE^{\circ}, ieTL^{2}]$ $\overline{s}(e_i) = s(e_i)_i$ $\overline{E}^{\perp} = \{e_i : e_E^{\perp}, ieTL^{2}\}$ $\overline{r}(e_i) = r(e_i)_{i+1}$



For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr \cdot L_K(E) \approx_{gr} Gr \cdot L_K(F)$$



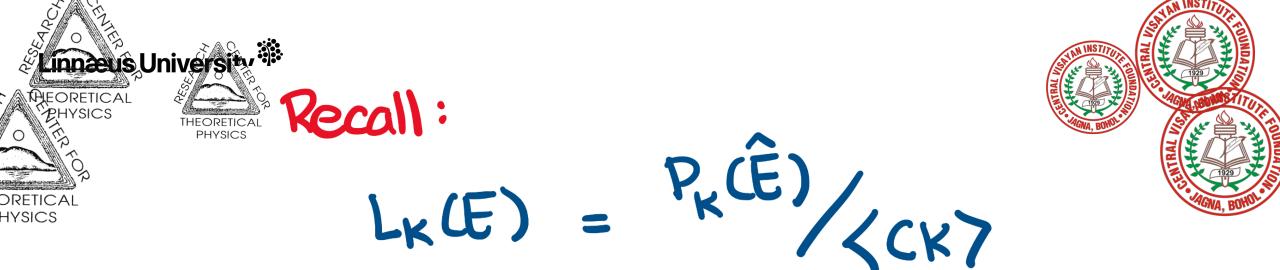


For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr - L_K(E) \approx_{gr} Gr - L_K(F)$$

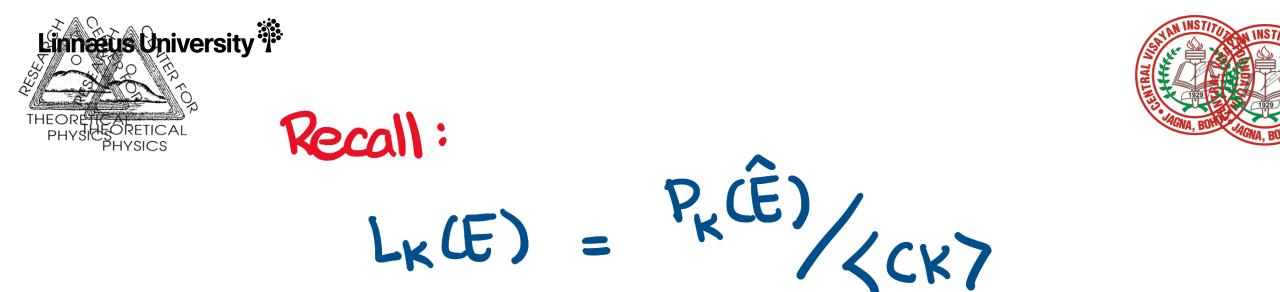
E - covering graph

Rep(Ē) ~ Mod - P_k(Ē) = Gr - P_k(E) - cotegory of groded modules over P_k(E)

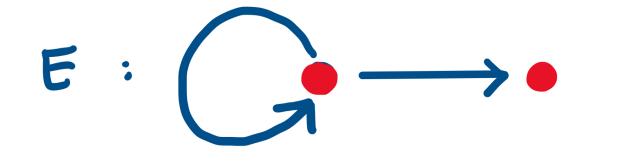


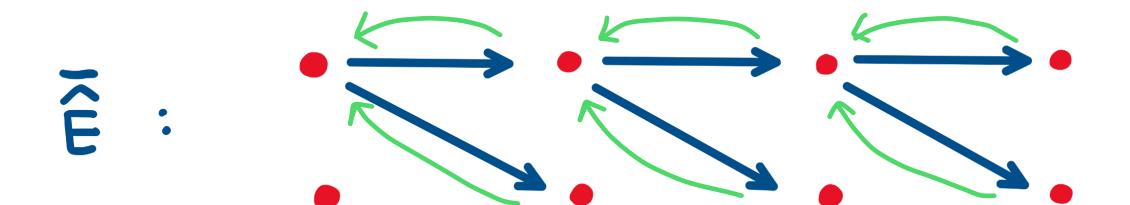
$Rep(\tilde{E}) \sim Gr-P_k(E)$

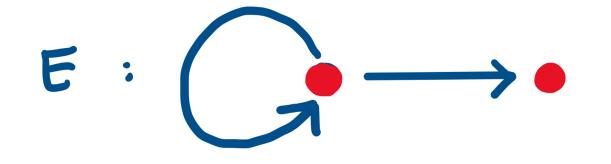
Rep(Ê,CK) ~ Gr-Pk(Ê)/(CK)



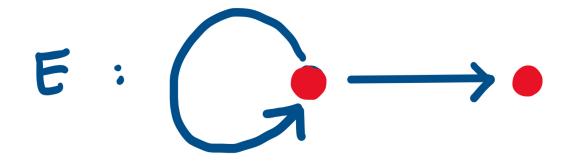
$Rep(\tilde{E}, CK) \sim Gr - L_K(E)$

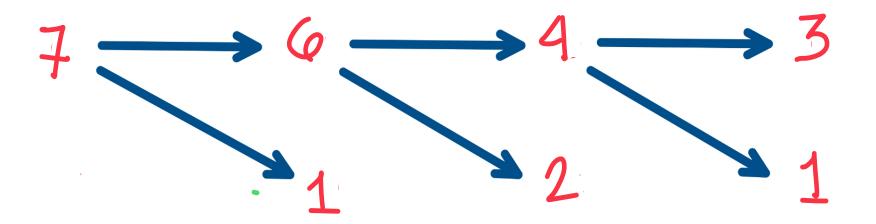






 $Rep(\tilde{E}, CK)$





Linnæus University 🎬

Theorem (Koc, Ozaydin 2018)

If E is a row-finite graph, then the category of unital $L_k(E)$ -module is equivalent to the full subcategory of representation 4 of \hat{E} satisfying:

$$f(e)_{s(e)=v}$$
: $f(v) \rightarrow \bigoplus g(r(e))_{s(e)=v}$

is an isomorphism.

(13) ((13)) (13)= Z dim (g(r(e)) dim (((v)) = Z dim () (rle

How to use this ?

 $n_1 + n_2 + n_3$

How about the conjecture?

$$T_{E} \cong T_{F} \iff Gr \cdot L_{k}(E) \approx_{gr} Gr \cdot L_{k}(F)$$

$$T \qquad T$$

$$Rep(\tilde{E}_{g}CK) \sim Rep(\tilde{F}, CK)$$

$$Mould commute with the shift functor$$

Bock Track a bit ...

Motivation:

Koc and Ozaydin (2018, 2020)

- characterized finite - dimensional representations of LPA thru maximal cydes and rinks.

Let E and F be finite graphs such that $T_E \cong T_F.$

Then there is a one-to-one correspondence between the maximal sinks and maximal cycles in E and F with the same length.

Let E be a finite graph such that sources are isolated vertices. Then $p: \widehat{E} \rightarrow \text{Vecle}$ in $\text{rep}(\widehat{E}_s r_{cu})$

has the form

$$P(v) = \begin{cases} k^{n_c} & \text{if } v \in C \text{ a maximal cycle} \\ k^{n_v} & \text{if } v \text{ is an isolated vertex} \\ 0 & \text{otherwise} \end{cases}$$

For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr-L_K(E) \approx_{gr} Gr-L_K(F)$$

The Graded Classification is true for finite-dimensional case!

$$\operatorname{ies} M_i \left(\bigoplus_{i \in \mathbb{Z}} M_i \right) < \infty$$

Sinkless graphs: $\dim(M_i) < \infty \text{ for each } i$

Linnæus University 🎬

Theorem

Let E and F be finite graphs with no sources and sinks and let $L_k(E)$ and $L_k(F)$ be their associated Leavitt path algebras with coefficients in a field k, respectively. If there is an order-preserving $\mathbb{Z}[x, x^{-1}]$ -module isomorphism $K_0^{gr}(L_k(E)) \cong K_0^{gr}(L_k(F))$, then there is an equivalence,

$$\operatorname{mod-} L_k(E) \approx \operatorname{mod-} L_k(F)$$

as well as graded equivalences

$$\operatorname{gr} - L_k(E) \approx_{\operatorname{gr}} \operatorname{gr} - L_k(F)$$
 and $\operatorname{gr}^{\mathbb{Z}} - L_k(E) \approx_{\operatorname{gr}} \operatorname{gr}^{\mathbb{Z}} - L_k(F)$.

Thank you very much!

Tack så mycket!

Linnæus University